Nothing Special   »   [go: up one dir, main page]

Skip to main content

Complexity of Restricted Variant of Star Colouring

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12016))

Included in the following conference series:

Abstract

Restricted star colouring is a variant of star colouring introduced to design heuristic algorithms to estimate sparse Hessian matrices. For \( k\in \mathbb {N} \), a \( k \)-restricted star (\( k \)-rs) colouring of a graph \( G \) is a function \( f:V(G)\rightarrow \{0,1,\dots ,k\,-\,1\} \) such that (i) \( f(x)\ne f(y) \) for every edge \( xy \) of \( G \), and (ii) there is no bicoloured 3-vertex path(\( P_3 \)) in \( G \) with the higher colour on its middle vertex. We show that for \( k\ge 3 \), it is NP-complete to decide whether a given planar bipartite graph of maximum degree \( k \) and girth at least six is \( k \)-rs colourable, and thereby answer a problem posed by Shalu and Sandhya (Graphs and Combinatorics 2016). In addition, we design an \( O(n^3) \) algorithm to test whether a chordal graph is 3-rs colourable.

First author is supported by SERB (DST), MATRICS scheme MTR/2018/000086.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albertson, M.O., Chappell, G.G., Kierstead, H.A., Kündgen, A., Ramamurthi, R.: Coloring with no 2-colored \(P_4\)’s. Electron. J. Comb. 11(1), 26 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Almeter, J., Demircan, S., Kallmeyer, A., Milans, K.G., Winslow, R.: Graph 2-rankings. Graphs Comb. 35(1), 91–102 (2019). https://doi.org/10.1007/s00373-018-1979-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., et al.: Rankings of graphs. SIAM J. Discrete Math. 11(1), 168–181 (1998). https://doi.org/10.1137/S0895480195282550

    Article  MathSciNet  MATH  Google Scholar 

  4. Bozdağ, D., Çatalyürek, Ü.V., Gebremedhin, A.H., Manne, F., Boman, E.G., Özgüner, F.: Distributed-memory parallel algorithms for distance-2 coloring and related problems in derivative computation. SIAM J. Sci. Comput. 32(4), 2418–2446 (2010). https://doi.org/10.1137/080732158

    Article  MathSciNet  MATH  Google Scholar 

  5. Curtis, A.R., Powell, M.J., Reid, J.K.: On the estimation of sparse Jacobian matrices. J. Inst. Math. Appl. 13(1), 117–120 (1974). https://doi.org/10.1093/imamat/13.1.117

    Article  MATH  Google Scholar 

  6. Dereniowski, D.: Rank coloring of graphs. In: Kubale, M. (ed.) Graph Colorings, pp. 79–93, Chap. 6. American Mathematical Society (2004). https://doi.org/10.1090/conm/352/06

  7. Gebremedhin, A., Nguyen, D., Patwary, M.M.A., Pothen, A.: ColPack: software for graph coloring and related problems in scientific computing. ACM Trans. Math. Softw. (TOMS) 40 (2013). https://doi.org/10.1145/2513109.2513110

    Article  MathSciNet  MATH  Google Scholar 

  8. Gebremedhin, A.H., Manne, F., Pothen, A.: What color is your Jacobian? Graph coloring for computing derivatives. SIAM Rev. 47(4), 629–705 (2005). https://doi.org/10.1137/S0036144504444711

    Article  MathSciNet  MATH  Google Scholar 

  9. Karpas, I., Neiman, O., Smorodinsky, S.: On vertex rankings of graphs and its relatives. Discrete Math. 338(8), 1460–1467 (2015). https://doi.org/10.1016/j.disc.2015.03.008

    Article  MathSciNet  MATH  Google Scholar 

  10. Katchalski, M., McCuaig, W., Seager, S.: Ordered colourings. Discrete Math. 142(1–3), 141–154 (1995). https://doi.org/10.1016/0012-365X(93)E0216-Q

    Article  MathSciNet  MATH  Google Scholar 

  11. Lyons, A.: Acyclic and star colorings of cographs. Discrete Appl. Math. 159(16), 1842–1850 (2011). https://doi.org/10.1016/j.dam.2011.04.011

    Article  MathSciNet  MATH  Google Scholar 

  12. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete Comput. Geom. 26(4), 573–590 (2001). https://doi.org/10.1007/s00454-001-0047-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Powell, M., Toint, P.L.: On the estimation of sparse Hessian matrices. SIAM J. Numer. Anal. 16(6), 1060–1074 (1979). https://doi.org/10.1137/0716078

    Article  MathSciNet  MATH  Google Scholar 

  14. Scheffler, P.: Node ranking and searching on graphs. In: 3rd Twente Workshop on Graphs and Combinatorial Optimization, Memorandum No. 1132 (1993)

    Google Scholar 

  15. Shalu, M.A., Sandhya, T.P.: Star coloring of graphs with girth at least five. Graphs Comb. 32(5), 2121–2134 (2016). https://doi.org/10.1007/s00373-016-1702-2

    Article  MathSciNet  MATH  Google Scholar 

  16. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shalu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shalu, M.A., Antony, C. (2020). Complexity of Restricted Variant of Star Colouring. In: Changat, M., Das, S. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2020. Lecture Notes in Computer Science(), vol 12016. Springer, Cham. https://doi.org/10.1007/978-3-030-39219-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39219-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39218-5

  • Online ISBN: 978-3-030-39219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics