Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Oriented Coloring of the Disjoint Union of Graphs

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12757))

Included in the following conference series:

Abstract

Let \(\overrightarrow{G} = (V, A)\) be an oriented graph and G the underlying graph of \(\overrightarrow{G}\). An oriented k-coloring of \(\overrightarrow{G}\) is a partition of V into k subsets such that there are no two adjacent vertices belonging to the same subset, and all the arcs between a pair of subsets have the same orientation. The oriented chromatic number \(\chi _o({\overrightarrow{G}})\) of \(\overrightarrow{G}\) is the smallest k, such that \({\overrightarrow{G}}\) admits an oriented k-coloring. The oriented chromatic number of G, denoted by \(\chi _o(G)\), is the maximum of \(\chi _o(\overrightarrow{G})\) for all orientations \(\overrightarrow{G}\) of G. Oriented chromatic number of product of graphs were widely studied, but the disjoint union has not being considered. In this article we study oriented coloring for the disjoint union of graphs. We establish the exact values of the union: of two complete graphs, of one complete with a forest graph, and of one complete and one cycle. Given a positive integer k, we denote by \(\mathcal {C}\mathcal {N}_k\) the class of graphs G such that \(\chi _o(G) \le k\). We use those results to characterize the class of graphs \(\mathcal {CN}_3\). We evaluate, as far as we know for the first time, the value of \(\chi _o(W_n)\) and we yield with this value an upper bound for the union of one complete and one wheel graph \(W_n\).

The authors are grateful to FAPEG, FAPERJ, CNPq and CAPES for their support of this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aravind, N.R., Narayanan, N., Subramanian, C.R.: Oriented colouring of some graph products. Discuss. Math. Graph Theory 31(4), 675–686 (2011). https://doi.org/10.7151/dmgt.1572

    Article  MathSciNet  MATH  Google Scholar 

  2. Coelho, H., Faria, L., Gravier, S., Klein, S.: Oriented coloring in planar, bipartite, bounded degree 3 acyclic oriented graphs. Discret. Appl. Math. 198, 109–117 (2016). https://doi.org/10.1016/j.dam.2015.06.023

    Article  MathSciNet  MATH  Google Scholar 

  3. Culus, J.-F., Demange, M.: Oriented coloring: complexity and approximation. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 226–236. Springer, Heidelberg (2006). https://doi.org/10.1007/11611257_20

    Chapter  MATH  Google Scholar 

  4. Dybizbanski, J., Nenca, A.: Oriented chromatic number of cartesian products and strong products of paths. Discuss. Math. Graph Theory 39(1), 211–223 (2019). https://doi.org/10.7151/dmgt.2074

    Article  MathSciNet  MATH  Google Scholar 

  5. Fertin, G., Raspaud, A., Roychowdhury, A.: On the oriented chromatic number of grids. Inf. Proc. Lett. 85(5), 261–266 (2003). https://doi.org/10.1016/S0020-0190(02)00405-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Ganian, R., Hliněný, P.: New results on the complexity of oriented colouring on restricted digraph classes. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 428–439. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11266-9_36

    Chapter  MATH  Google Scholar 

  7. Klostermeyer, W., MacGillivray, G.: Homomorphisms and oriented colorings of equivalence classes of oriented graphs. Discret. Math. 274(1–3), 161–172 (2004). https://doi.org/10.1016/S0012-365X(03)00086-4

    Article  MathSciNet  MATH  Google Scholar 

  8. Marshall, T.H.: Homomorphism bounds for oriented planar graphs of given minimum girth. Graphs Comb. 29(5), 1489–1499 (2013). https://doi.org/10.1007/s00373-012-1202-y

    Article  MathSciNet  MATH  Google Scholar 

  9. Ochem, P., Pinlou, A.: Oriented colorings of partial 2-trees. Inf. Proc. Lett. 108(2), 82–86 (2008). https://doi.org/10.1016/j.ipl.2008.04.007

    Article  MathSciNet  MATH  Google Scholar 

  10. Raspaud, A., Sopena, E.: Good and semi-strong colorings of oriented planar graphs. Inf. Proc. Lett. 51(4), 171–174 (1994). https://doi.org/10.1016/0020-0190(94)00088-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Sopena, É.: The chromatic number of oriented graphs. J. Graph Theory 25(3), 191–205 (1997). https://doi.org/10.1002/(SICI)1097-0118(199707)25:3<191::AID-JGT3>3.0.CO;2-G

  12. Sopena, É.: Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs. Discuss. Math. Graph Theory 32(3), 517–533 (2012). https://doi.org/10.7151/dmgt.1624

    Article  MathSciNet  MATH  Google Scholar 

  13. Sopena, É.: Homomorphisms and colourings of oriented graphs: An updated survey. Discret. Math. 339(7), 1993–2005 (2016). https://doi.org/10.1016/j.disc.2015.03.018

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus de Paula Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coelho, E.M.M., Coelho, H., Faria, L., Ferreira, M.d.P., Gravier, S., Klein, S. (2021). On the Oriented Coloring of the Disjoint Union of Graphs. In: Flocchini, P., Moura, L. (eds) Combinatorial Algorithms. IWOCA 2021. Lecture Notes in Computer Science(), vol 12757. Springer, Cham. https://doi.org/10.1007/978-3-030-79987-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79987-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79986-1

  • Online ISBN: 978-3-030-79987-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics