Nothing Special   »   [go: up one dir, main page]

Skip to main content

Wegner’s Conjecture on 2-Distance Coloring

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13153))

Included in the following conference series:

Abstract

A 2 distance k-coloring of a graph G is a function \(f: V(G)\rightarrow \{1,2,\ldots ,k\}\) such that \(|f(u)-f(v)|\ge 1\) if \(1\le d(u,v)\le 2\), where d(uv) is the distance between the two vertices u and v. The 2-distance chromatic number of G, written \(\chi _2(G)\), is the minimum k such that G has such a coloring. In this paper, we show that \(\chi _2(G)\le 5\Delta -7\) holds for planar graphs G with maximum degree \(\Delta \ge 5\), which improves a result due to Zhu and Bu (J. Comb. Optim. 36:55–64, 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agnarsson, G., Halldorsson, M.M.: Coloring powers of planar graphs. SIAM J. Discrete Math. 16, 651–662 (2003)

    Article  MathSciNet  Google Scholar 

  2. Borodin, O.V., Broersma, H.J., Glebov, A., Heuvel, J.V.D.: Stars and bunches in planar graphs. Part II: General planar graphs and colourings, CDAM researches report 2002-05 (2002)

    Google Scholar 

  3. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Discrete Math. 5, 586–595 (1992)

    Article  MathSciNet  Google Scholar 

  4. van den Heuvel, J., McGuinness, S.M., Molloy, Salavatipour, M.: Coloring of the square of planar graph. J. Graph Theory 42, 110–124 (2003)

    Google Scholar 

  5. Molloy, M., Salavatipour, M.: A bound on the chromatic number of the square of a planar graph. J. Comb. Theory Ser. B. 94, 189–213 (2005)

    Article  MathSciNet  Google Scholar 

  6. Montassier, M., Raspaud, A.: A note on 2-facial coloring of plane graphs. Inf. Process. Lett. 98, 235–241 (2006)

    Article  MathSciNet  Google Scholar 

  7. Roberts, F.S.: T-colorings of graphs: recent results and open problems. Discrete Math. 93, 229–245 (1991)

    Article  MathSciNet  Google Scholar 

  8. Song, H.M., Lai, H.J.: Upper bounds of r-hued colorings of planar graphs. Discrete Appl. Math. 243, 262–269 (2018)

    Article  MathSciNet  Google Scholar 

  9. Thomasse, C.: Applications of Tutte cycles, Technical report, Technical University of Denmark (2001)

    Google Scholar 

  10. Wegner, G.: Graphs with given diameter and a coloring problem. Technical report, University of Dortmund (1977)

    Google Scholar 

  11. Zhu, J., Bu, Y.: Minimum 2-distance coloring of planar graphs and channel assignment. J. Comb. Optim. 36(1), 55–64 (2018). https://doi.org/10.1007/s10878-018-0285-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This research was supported by National Science Foundation of China under Grant Nos. 11901243, 11771403 and Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ19A010005.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, J., Bu, Y., Zhu, H. (2021). Wegner’s Conjecture on 2-Distance Coloring. In: Wu, W., Du, H. (eds) Algorithmic Aspects in Information and Management. AAIM 2021. Lecture Notes in Computer Science(), vol 13153. Springer, Cham. https://doi.org/10.1007/978-3-030-93176-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93176-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93175-9

  • Online ISBN: 978-3-030-93176-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics