Nothing Special   »   [go: up one dir, main page]

Skip to main content

Analyzing Unit Read-Once Refutations in Difference Constraint Systems

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12678))

Included in the following conference series:

Abstract

In this paper, we investigate the refutability of Difference Constraint Systems (DCSs) in the Unit Read-once Refutation (UROR) system. Recall that a difference constraint is a linear relationship of the form: \(x_{i}-x_{j} \le b_{ij}\) and a DCS is a conjunction of such constraints. DCSs arise in a number of application domains such as program verification and scheduling. It follows that efficient refutation methodologies for these systems are of paramount interest. The UROR system is incomplete, in that unsatisfiable difference constraint systems may not have a refutation in this system. However, this refutation system provides a useful tool for proving if a DCS is infeasible because of a restriction on the values the variables can take. Note that without any absolute constraints, the values of the variable in a solution to a DCS can be uniformly increased or decreased without changing the validity of the solution. Thus, the UROR refutations of a DCS depend upon the restrictions placed on the values variables can take. This is in contrast to unrestricted refutations, which need not depend on these restrictions. Investigating weak (incomplete) refutation systems leads to a better understanding of the inference rules required for establishing the infeasibility of the given constraint system.

This research was supported in part by the Air-Force Research Laboratory, Rome through Contract FA8750-17-S-7007 and in part by the Air-Force Office of Scientific Research through Grant FA9550-19-1-0177.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization and Their Approximability Properties, 1st edn. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-58412-1

    Book  MATH  Google Scholar 

  2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  3. Cotton, S., Asarin, E., Maler, O., Niebert, P.: Some progress in satisfiability checking for difference logic. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 263–276. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_19

    Chapter  Google Scholar 

  4. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–183. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_19

    Chapter  MATH  Google Scholar 

  5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

    Google Scholar 

  6. Cox, I.J., Rao, S.B., Zhong, Y.: Ratio regions: a technique for image segmentation. In: Proceedings of the International Conference on Pattern Recognition, pp. 557–564. IEEE, August 1996

    Google Scholar 

  7. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  8. Demtrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths. J. ACM 51(6), 968–992 (2004)

    Article  MathSciNet  Google Scholar 

  9. Farkas, G.: Über die Theorie der Einfachen Ungleichungen. J. für die Reine und Angewandte Mathematik 124(124), 1–27 (1902)

    MathSciNet  MATH  Google Scholar 

  10. Fleury, P.-H.: Deux problèmes de géométrie de situation. J. de mathématiques élémentaires, 2nd ser. 2, 257–261 (1883). (in French)

    Google Scholar 

  11. Gerber, R., Pugh, W., Saksena, M.: Parametric dispatching of hard real-time tasks. IEEE Trans. Comput. 44(3), 471–479 (1995)

    Article  Google Scholar 

  12. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39(2–3), 297–308 (1985)

    Article  MathSciNet  Google Scholar 

  13. Han, C.C., Lin, K.J.: Job scheduling with temporal distance constraints. Technical report UIUCDCS-R-89-1560, University of Illinois at Urbana-Champaign, Department of Computer Science (1989)

    Google Scholar 

  14. Iwama, K., Miyano, E.: Intractability of read-once resolution. In: Proceedings of the 10th Annual Conference on Structure in Complexity Theory (SCTC 1995), Los Alamitos, CA, USA, pp. 29–36. IEEE Computer Society Press, June 1995

    Google Scholar 

  15. Kann, V.: Polynomially bounded minimization problems that are hard to approximate. Nord. J. Comput. 1(3), 317–331 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Kleine Büning, H., Wojciechowski, P., Subramani, K.: Read-once resolutions in horn formulas. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS, vol. 11458, pp. 100–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18126-0_9

    Chapter  MATH  Google Scholar 

  17. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1999)

    MATH  Google Scholar 

  18. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and its application to difference logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_33

    Chapter  Google Scholar 

  19. John Alan Robinson: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)

    Article  MathSciNet  Google Scholar 

  20. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1987)

    MATH  Google Scholar 

  21. Seshia, S.A., Lahiri, S.K., Bryant, R.E.: A hybrid sat-based decision procedure for separation logic with uninterpreted functions. In: DAC, pp. 425–430 (2003)

    Google Scholar 

  22. Subramani, K.: Optimal length resolution refutations of difference constraint systems. J. Autom. Reason. (JAR) 43(2), 121–137 (2009). https://doi.org/10.1007/s10817-009-9139-4

    Article  MathSciNet  MATH  Google Scholar 

  23. Subramani, K., Williamson, M., Gu, X.: Improved algorithms for optimal length resolution refutation in difference constraint systems. Formal Aspects Comput. 25(2), 319–341 (2013). https://doi.org/10.1007/s00165-011-0186-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Subramani, K., Wojciechowki, P.: A polynomial time algorithm for read-once certification of linear infeasibility in UTVPI constraints. Algorithmica 81(7), 2765–2794 (2019). https://doi.org/10.1007/s00453-019-00554-z

    Article  MathSciNet  MATH  Google Scholar 

  25. Urquhart, A.: The complexity of propositional proofs. Bull. Symb. Log. 1(4), 425–467 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Subramani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Subramani, K., Wojciechowski, P. (2021). Analyzing Unit Read-Once Refutations in Difference Constraint Systems. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds) Logics in Artificial Intelligence. JELIA 2021. Lecture Notes in Computer Science(), vol 12678. Springer, Cham. https://doi.org/10.1007/978-3-030-75775-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75775-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75774-8

  • Online ISBN: 978-3-030-75775-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics