Nothing Special   »   [go: up one dir, main page]

Skip to main content

Consensus Driven Self-Organization: Towards Non Hierarchical Multi-Map Architectures

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1333))

Included in the following conference series:

Abstract

This paper introduces CxSOM, a model to build modular architectures based on self-organizing maps (SOM). An original consensus driven approach enables to adress non-hierarchical architectures where SOMs get organized jointly. The paper aims at showing how the modules are able to store the association between data, and evaluating, by a mutual information criterion, the resulting organization. These results stand as preliminary work to study bigger architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baheux, D., Fix, J., Frezza-Buet, H.: Towards an effective multi-map self organizing recurrent neural network. In: Proceedigs ESANN’2014, pp. 201–206 (2014)

    Google Scholar 

  2. Ballard, D.H.: Cortical connections and parallel processing: structure and function. Behav. Brain Sci. 9, 67–129 (1986)

    Article  Google Scholar 

  3. Dittenbach, M., Rauber, A., Merkl, D.: Uncovering hierarchical structure in data using the growing hierarchical self-organizing map. Neurocomputing 48(1), 199–216 (2002)

    Article  Google Scholar 

  4. Fix, J., Frezza-Buet, H.: Look and feel what and how recurrent self-organizing maps learn. In: Vellido, A., Gibert, K., Angulo, C., Martín Guerrero, J.D. (eds.) WSOM 2019. AISC, vol. 976, pp. 3–12. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-19642-4_1

    Chapter  Google Scholar 

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  6. Hagenbuchner, M., Sperduti, A.: Ah Chung Tsoi: a self-organizing map for adaptive processing of structured data. IEEE Trans. Neural Networks 14(3), 491–505 (2003)

    Article  Google Scholar 

  7. Jantvik, T., Gustafsson, L., Papliński, A.P.: A self-organized artificial neural network architecture for sensory integration with applications to letter-phoneme integration. Neural Comput. 23(8), 2101–2139 (2011)

    Article  Google Scholar 

  8. Johnsson, M., Balkenius, C., Hesslow, G.: Associative self-organizing map. In: Proceedings IJCCI’2009, pp. 363–370 (2009)

    Google Scholar 

  9. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  Google Scholar 

  10. Lallee, S., Dominey, P.: Multi-modal convergence maps: from body schema and self-representation to mental imagery. Adapt. Behav. 21(4), 274–285 (2013)

    Article  Google Scholar 

  11. Lefort, M., Boniface, Y., Girau, B.: SOMMA: Cortically Inspired Paradigms for Multimodal Processing, pp. 1–8 (2013)

    Google Scholar 

  12. Ménard, O., Frezza-Buet, H.: Model of multi-modal cortical processing: coherent learning in self-organizing modules. Neural Networks 18(5–6), 646–655 (2005)

    Article  Google Scholar 

  13. Miikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: Computational Maps in the Visual Cortex. Springer, New York (2005)

    Google Scholar 

  14. Miller, K.D., Simons, D.J., Pinto, D.J.: Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr. Opin. Neurobiol. 11, 488–497 (2001)

    Article  Google Scholar 

  15. Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)

    Article  Google Scholar 

  16. Parisi, G.I., Tani, J., Weber, C., Wermter, S.: Emergence of multimodal action representations from neural network self-organization. Cogn. Syst. Res. 43, 208–221 (2017)

    Article  Google Scholar 

  17. Tan, A.H., Subagdja, B., Wang, D., Meng, L.: Self-organizing neural networks for universal learning and multimodal memory encoding. Neural Networks 120, 58–73 (2019)

    Article  Google Scholar 

  18. Wan, W., Fraser, D.: Multisource data fusion with multiple self-organizing maps. IEEE Trans. Geosci. Remote Sens. 37(3), 1344–1349 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noémie Gonnier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gonnier, N., Boniface, Y., Frezza-Buet, H. (2020). Consensus Driven Self-Organization: Towards Non Hierarchical Multi-Map Architectures. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1333. Springer, Cham. https://doi.org/10.1007/978-3-030-63823-8_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63823-8_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63822-1

  • Online ISBN: 978-3-030-63823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics