Abstract
This paper introduces CxSOM, a model to build modular architectures based on self-organizing maps (SOM). An original consensus driven approach enables to adress non-hierarchical architectures where SOMs get organized jointly. The paper aims at showing how the modules are able to store the association between data, and evaluating, by a mutual information criterion, the resulting organization. These results stand as preliminary work to study bigger architectures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baheux, D., Fix, J., Frezza-Buet, H.: Towards an effective multi-map self organizing recurrent neural network. In: Proceedigs ESANN’2014, pp. 201–206 (2014)
Ballard, D.H.: Cortical connections and parallel processing: structure and function. Behav. Brain Sci. 9, 67–129 (1986)
Dittenbach, M., Rauber, A., Merkl, D.: Uncovering hierarchical structure in data using the growing hierarchical self-organizing map. Neurocomputing 48(1), 199–216 (2002)
Fix, J., Frezza-Buet, H.: Look and feel what and how recurrent self-organizing maps learn. In: Vellido, A., Gibert, K., Angulo, C., Martín Guerrero, J.D. (eds.) WSOM 2019. AISC, vol. 976, pp. 3–12. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-19642-4_1
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Hagenbuchner, M., Sperduti, A.: Ah Chung Tsoi: a self-organizing map for adaptive processing of structured data. IEEE Trans. Neural Networks 14(3), 491–505 (2003)
Jantvik, T., Gustafsson, L., Papliński, A.P.: A self-organized artificial neural network architecture for sensory integration with applications to letter-phoneme integration. Neural Comput. 23(8), 2101–2139 (2011)
Johnsson, M., Balkenius, C., Hesslow, G.: Associative self-organizing map. In: Proceedings IJCCI’2009, pp. 363–370 (2009)
Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)
Lallee, S., Dominey, P.: Multi-modal convergence maps: from body schema and self-representation to mental imagery. Adapt. Behav. 21(4), 274–285 (2013)
Lefort, M., Boniface, Y., Girau, B.: SOMMA: Cortically Inspired Paradigms for Multimodal Processing, pp. 1–8 (2013)
Ménard, O., Frezza-Buet, H.: Model of multi-modal cortical processing: coherent learning in self-organizing modules. Neural Networks 18(5–6), 646–655 (2005)
Miikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: Computational Maps in the Visual Cortex. Springer, New York (2005)
Miller, K.D., Simons, D.J., Pinto, D.J.: Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr. Opin. Neurobiol. 11, 488–497 (2001)
Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)
Parisi, G.I., Tani, J., Weber, C., Wermter, S.: Emergence of multimodal action representations from neural network self-organization. Cogn. Syst. Res. 43, 208–221 (2017)
Tan, A.H., Subagdja, B., Wang, D., Meng, L.: Self-organizing neural networks for universal learning and multimodal memory encoding. Neural Networks 120, 58–73 (2019)
Wan, W., Fraser, D.: Multisource data fusion with multiple self-organizing maps. IEEE Trans. Geosci. Remote Sens. 37(3), 1344–1349 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Gonnier, N., Boniface, Y., Frezza-Buet, H. (2020). Consensus Driven Self-Organization: Towards Non Hierarchical Multi-Map Architectures. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1333. Springer, Cham. https://doi.org/10.1007/978-3-030-63823-8_60
Download citation
DOI: https://doi.org/10.1007/978-3-030-63823-8_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63822-1
Online ISBN: 978-3-030-63823-8
eBook Packages: Computer ScienceComputer Science (R0)