Nothing Special   »   [go: up one dir, main page]

Skip to main content

Incremental Self-Organizing Maps for Collaborative Clustering

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10634))

Included in the following conference series:

  • 4728 Accesses

Abstract

Collaborative clustering aims at revealing the common structures of data distributed on different sites using local clustering methods such as Self-Organizing Maps (SOM). To face the ever growing quantity of data available, incremental clustering methods are needed. This paper presents an algorithm to perform incremental SOM-based collaborative clustering without topological modifications of the map. The experiments conducted on several datasets demonstrate the validity of the method and present the influence of the batch size on the learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ghassany, M., Grozavu, N., Bennani, Y.: Collaborative clustering using prototype-based techniques. Int. J. Comput. Intell. Appl. 11(03), 1250017 (2012)

    Article  Google Scholar 

  2. Pedrycz, W., Rai, P.: Collaborative clustering with the use of fuzzy c-means and its quantification. Fuzzy Sets Syst. 159(18), 2399–2427 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Mitra, S., Banka, H., Pedrycz, W.: Rough-fuzzy collaborative clustering. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 36(4), 795–805 (2006)

    Article  Google Scholar 

  4. Cornuéjols, A., Wemmert, C., Gançarski, P., Bennani, Y.: Collaborative clustering: Why, when, what and how. Inf. Fusion 39, 81–95 (2018)

    Article  Google Scholar 

  5. Grozavu, N., Cabanes, G., Bennani, Y.: Diversity analysis in collaborative clustering. In: 2014 International Joint Conference on Neural Networks, pp. 1754–1761. IEEE (2014)

    Google Scholar 

  6. Filali, A., Jlassi, C., Arous, N.: Som variants for topological horizontal collaboration. In: 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), pp. 459–464. IEEE (2016)

    Google Scholar 

  7. Rastin, P., Cabanes, G., Grozavu, N., Bennani, Y.: Collaborative clustering: How to select the optimal collaborators? In: 2015 IEEE Symposium Series on Computational Intelligence, pp. 787–794. IEEE (2015)

    Google Scholar 

  8. Bishop, C.M., Svensén, M., Williams, C.K.: GTM: The generative topographic mapping. Neural Comput. 10(1), 215–234 (1998)

    Article  MATH  Google Scholar 

  9. Sublime, J., Grozavu, N., Cabanes, G., Bennani, Y., Cornuéjols, A.: From horizontal to vertical collaborative clustering using generative topographic maps. Int. J. Hybrid Intell. Syst. 12(4), 245–256 (2015)

    Article  Google Scholar 

  10. Ghassany, M., Grozavu, N., Bennani, Y.: Collaborative multi-view clustering. In: The 2013 International Joint Conference on Neural Networks, pp. 1–8. IEEE (2013)

    Google Scholar 

  11. Wang, Y., Chen, L., Mei, J.P.: Incremental fuzzy clustering with multiple medoids for large data. IEEE Trans. Fuzzy Syst. 22(6), 1557–1568 (2014)

    Article  Google Scholar 

  12. Deng, D., Kasabov, N.: ESOM: An algorithm to evolve self-organizing maps from online data streams. In: Neural Networks, vol. 6, pp. 3–8. IEEE (2000)

    Google Scholar 

  13. Papliński, A.P.: Incremental self-organizing map (iSOM) in categorization of visual objects. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7664, pp. 125–132. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34481-7_16

    Chapter  Google Scholar 

  14. UCI: Machine Learning Repository. https://archive.ics.uci.edu/ml/index.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Maurel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Maurel, D., Sublime, J., Lefebvre, S. (2017). Incremental Self-Organizing Maps for Collaborative Clustering. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10634. Springer, Cham. https://doi.org/10.1007/978-3-319-70087-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70087-8_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70086-1

  • Online ISBN: 978-3-319-70087-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics