Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Hardness of Sampling Connected Subgraphs

  • Conference paper
  • First Online:
LATIN 2020: Theoretical Informatics (LATIN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12118))

Included in the following conference series:

  • 661 Accesses

Abstract

We consider the problem of sampling connected induced subgraphs of a given input graph G. Our first result is that an efficient algorithm to approximately sample connected induced subgraphs of a given size (the size is specified in the input) does not exist unless RP = NP. We then focus on the problem of approximately sampling connected induced subgraphs with a bias, more precisely we consider a distribution where the probability of a connected subgraph induced by \(S\subseteq V(G)\) is proportional to \(\lambda ^{|S|}\). When the input graph G has maximum degree d we identify a threshold \(\lambda _d=\frac{(d-1)^{(d-1)}}{d^d}\). For \(0< \lambda < \lambda _d\) there exists a trivial efficient sampler for the problem, and for \(\lambda _d<\lambda <1\) an efficient approximate sampler does not exist unless RP = NP. Finally, we show local Markov chains are unlikely to be effective at approximately sampling connected subgraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs (2002). https://www.stat.berkeley.edu/users/aldous/RWG/book.pdf. Unfinished monograph, recompiled 2014

  2. Baskerville, K., Grassberger, P., Paczuski, M.: Graph animals, subgraph sampling, and motif search in large networks. Phys. Rev. E 76(3), 036107, 13 (2007)

    Google Scholar 

  3. Frieze, A.: Notes on Counting and rapidly mixing Markov chains. http://www.math.cmu.edu/~af1p/Mixing.html

  4. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol. 4453, pp. 92–106. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71681-5_7

    Chapter  Google Scholar 

  5. Guo, H., Jerrum, M.: A polynomial-time approximation algorithm for all-terminal network reliability. In: Proceedings of the 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, Prague, Czech Republic, 9–13 July 2018, pp. 68:1–68:12 (2018)

    Google Scholar 

  6. Ising, E.: Contribution to the theory of ferromagnetism. Z. Phys. 31, 253–258 (1925)

    Article  Google Scholar 

  7. Jerrum, M., Meeks, K.: The parameterised complexity of counting connected subgraphs and graph motifs. J. Comput. Syst. Sci. 81(4), 702–716 (2015)

    Article  MathSciNet  Google Scholar 

  8. Jung, K., Shah, D.: Inference in binary pair-wise Markov random fields through self-avoiding walks. arXiv e-prints p. cs/0610111 (2006)

    Google Scholar 

  9. Kangas, K., Kaski, P., Koivisto, M., Korhonen, J.H.: On the number of connected sets in bounded degree graphs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 336–347. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0_28

    Chapter  MATH  Google Scholar 

  10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, Boston (1972)

    Chapter  Google Scholar 

  11. Kashtan, N., Milo, R., Itzkovitz, S., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)

    Article  Google Scholar 

  12. Lenz, W.: Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern. Z. Phys. 21, 613–615 (1920)

    Google Scholar 

  13. Lu, X., Bressan, S.: Sampling connected induced subgraphs uniformly at random. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 195–212. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31235-9_13

    Chapter  Google Scholar 

  14. Łuczak, T., Vigoda, E.: Torpid mixing of the Wang-Swendsen-Kotecký algorithm for sampling colorings. J. Discret. Algorithms 3(1), 92–100 (2005)

    Article  Google Scholar 

  15. Mossel, E., Weitz, D., Wormald, N.: On the hardness of sampling independent sets beyond the tree threshold. Probab. Theory Relat. Fields 143(3), 401–439 (2009)

    Article  MathSciNet  Google Scholar 

  16. Patel, V., Regts, G.: Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials. SIAM J. Comput. 46(6), 1893–1919 (2017)

    Article  MathSciNet  Google Scholar 

  17. Patel, V., Regts, G.: Computing the number of induced copies of a fixed graph in a bounded degree graph. Algorithmica 81(5), 1844–1858 (2018)

    Article  MathSciNet  Google Scholar 

  18. Garey, M.R., Johnson, D.: The rectilinear steiner tree problem is NP-complete. SIAM J. Appl. Math. 32, 826–834 (1977)

    Article  MathSciNet  Google Scholar 

  19. Savoie, W., et al.: Phototactic supersmarticles. Artif. Life Robot. 23(4), 459–468 (2018). https://doi.org/10.1007/s10015-018-0473-7

    Article  Google Scholar 

  20. Sinclair, A.: Algorithms for Random Generation and Counting: A Markov Chain Approach. Birkhauser Verlag, Basel (1993)

    Book  Google Scholar 

  21. Sly, A.: Computational transition at the uniqueness threshold. In: Proceedings of the 51st IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 287–296 (2010)

    Google Scholar 

  22. Stanley, R.P.: Enumerative Combinatorics: vol. 2, 1st edn. Cambridge University Press, New York (1999)

    Google Scholar 

  23. Vince, A.: Counting connected sets and connected partitions of a graph. Australas. J. Comb. 67(2), 281–293 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Weitz, D.: Counting independent sets up to the tree threshold. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, STOC, pp. 140–149. ACM, New York (2006)

    Google Scholar 

  25. White, K., Farber, M., Pulleyblank, W.: Steiner trees, connected domination and strongly chordal graphs. Networks 15(1), 109–124 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Read-McFarland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Read-McFarland, A., Štefankovič, D. (2020). The Hardness of Sampling Connected Subgraphs. In: Kohayakawa, Y., Miyazawa, F.K. (eds) LATIN 2020: Theoretical Informatics. LATIN 2021. Lecture Notes in Computer Science(), vol 12118. Springer, Cham. https://doi.org/10.1007/978-3-030-61792-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61792-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61791-2

  • Online ISBN: 978-3-030-61792-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics