Abstract
Finding densest subgraphs is a fundamental problem in graph mining, with several applications in different fields. In this paper, we consider two variants of the problem of covering a graph with k densest subgraphs, where \(k \ge 2\). The first variant aims to find a collection of k subgraphs of maximum density, the second variant asks for a set of k subgraphs such that they maximize an objective function that includes the sum of the subgraphs densities and a distance function, in order to differentiate the computed subgraphs. We show that the first variant of the problem is solvable in polynomial time, for any \(k \ge 2\). For the second variant, which is NP-hard for \(k \ge 3\), we present an approximation algorithm that achieves a factor of \(\frac{2}{5}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In: Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 25–37. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95995-3_3
Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Discret. Appl. Math. 121(1–3), 15–26 (2002)
Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and mapreduce. PVLDB 5(5), 454–465 (2012)
Balalau, O.D., Bonchi, F., Chan, T.H., Gullo, F., Sozio, M.: Finding subgraphs with maximum total density and limited overlap. In: Cheng, X., Li, H., Gabrilovich, E., Tang, J. (eds.) Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM 2015, pp. 379–388. ACM (2015)
Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X_10
Dondi, R., Hosseinzadeh, M.M., Guzzi, P.H.: A novel algorithm for finding top-k weighted overlapping densest connected subgraphs in dual networks. Appl. Netw. Sci. 6(1), 1–17 (2021). https://doi.org/10.1007/s41109-021-00381-8
Dondi, R., Hosseinzadeh, M.M., Mauri, G., Zoppis, I.: Top-k overlapping densest subgraphs: approximation algorithms and computational complexity. J. Comb. Optim. 41(1), 80–104 (2021)
Dondi, R., Mauri, G., Sikora, F., Zoppis, I.: Covering a graph with clubs. J. Graph Algorithms Appl. 23(2), 271–292 (2019)
Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: Motifcut: regulatory motifs finding with maximum density subgraphs. Bioinformatics 22(14), 156–157 (2006)
Galbrun, E., Gionis, A., Tatti, N.: Top-k overlapping densest subgraphs. Data Min. Knowl. Discov. 30(5), 1134–1165 (2016)
Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)
Goldberg, A.V.: Finding a maximum density subgraph. Technical report, Berkeley, CA, USA (1984)
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Computer Computations, The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972)
Kawase, Y., Miyauchi, A.: The densest subgraph problem with a convex/concave size function. Algorithmica 80(12), 3461–3480 (2018)
Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02927-1_50
Komusiewicz, C.: Multivariate algorithmics for finding cohesive subnetworks. Algorithms 9(1), 21 (2016)
Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algorithms 17(2), 222–236 (1994)
Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for emerging cyber-communities. Comput. Netw. 31(11–16), 1481–1493 (1999)
Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)
Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)
Nasir, M.A.U., Gionis, A., Morales, G.D.F., Girdzijauskas, S.: Fully dynamic algorithm for top-k densest subgraphs. In: Lim, E., (eds.) Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, pp. 1817–1826. ACM (2017)
Rozenshtein, P., Bonchi, F., Gionis, A., Sozio, M., Tatti, N.: Finding events in temporal networks: segmentation meets densest subgraph discovery. Knowl. Inf. Syst. 62(4), 1611–1639 (2019). https://doi.org/10.1007/s10115-019-01403-9
Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: Rao, B., Krishnapuram, B., Tomkins, A., Yang, Q. (eds.) Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010, pp. 939–948. ACM (2010)
Tatti, N., Gionis, A.: Density-friendly graph decomposition. In: Gangemi, A., Leonardi, S., Panconesi, A. (eds.) Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Florence, Italy, 18–22 May 2015, pp. 1089–1099. ACM (2015)
Valari, E., Kontaki, M., Papadopoulos, A.N.: Discovery of top-k dense subgraphs in dynamic graph collections. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 213–230. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31235-9_14
Zou, P., Li, H., Wang, W., Xin, C., Zhu, B.: Finding disjoint dense clubs in a social network. Theor. Comput. Sci. 734, 15–23 (2018)
Zou, Z.: Polynomial-time algorithm for finding densest subgraphs in uncertain graphs. In: Proceedings of Internation Workshop on Mining and Learning with Graphs (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Dondi, R., Popa, A. (2022). Covering a Graph with Densest Subgraphs. In: Balachandran, N., Inkulu, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2022. Lecture Notes in Computer Science(), vol 13179. Springer, Cham. https://doi.org/10.1007/978-3-030-95018-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-95018-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95017-0
Online ISBN: 978-3-030-95018-7
eBook Packages: Computer ScienceComputer Science (R0)