Nothing Special   »   [go: up one dir, main page]

Skip to main content

Covering a Graph with Densest Subgraphs

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13179))

Included in the following conference series:

  • 683 Accesses

Abstract

Finding densest subgraphs is a fundamental problem in graph mining, with several applications in different fields. In this paper, we consider two variants of the problem of covering a graph with k densest subgraphs, where \(k \ge 2\). The first variant aims to find a collection of k subgraphs of maximum density, the second variant asks for a set of k subgraphs such that they maximize an objective function that includes the sum of the subgraphs densities and a distance function, in order to differentiate the computed subgraphs. We show that the first variant of the problem is solvable in polynomial time, for any \(k \ge 2\). For the second variant, which is NP-hard for \(k \ge 3\), we present an approximation algorithm that achieves a factor of \(\frac{2}{5}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In: Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 25–37. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95995-3_3

    Chapter  Google Scholar 

  2. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Discret. Appl. Math. 121(1–3), 15–26 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and mapreduce. PVLDB 5(5), 454–465 (2012)

    Google Scholar 

  4. Balalau, O.D., Bonchi, F., Chan, T.H., Gullo, F., Sozio, M.: Finding subgraphs with maximum total density and limited overlap. In: Cheng, X., Li, H., Gabrilovich, E., Tang, J. (eds.) Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM 2015, pp. 379–388. ACM (2015)

    Google Scholar 

  5. Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X_10

    Chapter  MATH  Google Scholar 

  6. Dondi, R., Hosseinzadeh, M.M., Guzzi, P.H.: A novel algorithm for finding top-k weighted overlapping densest connected subgraphs in dual networks. Appl. Netw. Sci. 6(1), 1–17 (2021). https://doi.org/10.1007/s41109-021-00381-8

    Article  Google Scholar 

  7. Dondi, R., Hosseinzadeh, M.M., Mauri, G., Zoppis, I.: Top-k overlapping densest subgraphs: approximation algorithms and computational complexity. J. Comb. Optim. 41(1), 80–104 (2021)

    Article  MathSciNet  Google Scholar 

  8. Dondi, R., Mauri, G., Sikora, F., Zoppis, I.: Covering a graph with clubs. J. Graph Algorithms Appl. 23(2), 271–292 (2019)

    Article  MathSciNet  Google Scholar 

  9. Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: Motifcut: regulatory motifs finding with maximum density subgraphs. Bioinformatics 22(14), 156–157 (2006)

    Article  Google Scholar 

  10. Galbrun, E., Gionis, A., Tatti, N.: Top-k overlapping densest subgraphs. Data Min. Knowl. Discov. 30(5), 1134–1165 (2016)

    Article  MathSciNet  Google Scholar 

  11. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

    Article  MathSciNet  Google Scholar 

  12. Goldberg, A.V.: Finding a maximum density subgraph. Technical report, Berkeley, CA, USA (1984)

    Google Scholar 

  13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Computer Computations, The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  14. Kawase, Y., Miyauchi, A.: The densest subgraph problem with a convex/concave size function. Algorithmica 80(12), 3461–3480 (2018)

    Article  MathSciNet  Google Scholar 

  15. Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02927-1_50

    Chapter  Google Scholar 

  16. Komusiewicz, C.: Multivariate algorithmics for finding cohesive subnetworks. Algorithms 9(1), 21 (2016)

    Article  MathSciNet  Google Scholar 

  17. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algorithms 17(2), 222–236 (1994)

    Article  MathSciNet  Google Scholar 

  18. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for emerging cyber-communities. Comput. Netw. 31(11–16), 1481–1493 (1999)

    Article  Google Scholar 

  19. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    Article  MathSciNet  Google Scholar 

  20. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)

    Article  MathSciNet  Google Scholar 

  21. Nasir, M.A.U., Gionis, A., Morales, G.D.F., Girdzijauskas, S.: Fully dynamic algorithm for top-k densest subgraphs. In: Lim, E., (eds.) Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, pp. 1817–1826. ACM (2017)

    Google Scholar 

  22. Rozenshtein, P., Bonchi, F., Gionis, A., Sozio, M., Tatti, N.: Finding events in temporal networks: segmentation meets densest subgraph discovery. Knowl. Inf. Syst. 62(4), 1611–1639 (2019). https://doi.org/10.1007/s10115-019-01403-9

    Article  Google Scholar 

  23. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: Rao, B., Krishnapuram, B., Tomkins, A., Yang, Q. (eds.) Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010, pp. 939–948. ACM (2010)

    Google Scholar 

  24. Tatti, N., Gionis, A.: Density-friendly graph decomposition. In: Gangemi, A., Leonardi, S., Panconesi, A. (eds.) Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Florence, Italy, 18–22 May 2015, pp. 1089–1099. ACM (2015)

    Google Scholar 

  25. Valari, E., Kontaki, M., Papadopoulos, A.N.: Discovery of top-k dense subgraphs in dynamic graph collections. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 213–230. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31235-9_14

    Chapter  Google Scholar 

  26. Zou, P., Li, H., Wang, W., Xin, C., Zhu, B.: Finding disjoint dense clubs in a social network. Theor. Comput. Sci. 734, 15–23 (2018)

    Article  MathSciNet  Google Scholar 

  27. Zou, Z.: Polynomial-time algorithm for finding densest subgraphs in uncertain graphs. In: Proceedings of Internation Workshop on Mining and Learning with Graphs (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Dondi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dondi, R., Popa, A. (2022). Covering a Graph with Densest Subgraphs. In: Balachandran, N., Inkulu, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2022. Lecture Notes in Computer Science(), vol 13179. Springer, Cham. https://doi.org/10.1007/978-3-030-95018-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95018-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95017-0

  • Online ISBN: 978-3-030-95018-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics