Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Probe-Camera System for 3D Ultrasound Image Reconstruction

  • Conference paper
  • First Online:
Imaging for Patient-Customized Simulations and Systems for Point-of-Care Ultrasound (BIVPCS 2017, POCUS 2017)

Abstract

This paper proposes a probe-camera system for 3D ultrasound (US) image reconstruction with probe-camera calibration and probe localization methods. The probe-camera calibration method employs an existing US phantom for convenience with a simple procedure. The probe localization method employs structure from motion (SfM) to estimate the camera motion. SfM is used to reconstruct 3D point clouds from multiple-view images and simultaneously estimate each camera position. Through experiments using the developed system, we demonstrate that the proposed method exhibits good performance to reconstruct 3D US volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Camera Calibration Toolbox for Matlab: http://www.vision.caltech.edu/bouguetj/calib_doc/.

  2. 2.

    Stradwin: http://mi.eng.cam.ac.uk/~rwp/stradwin.

References

  1. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  2. Gee, A., Prager, R., Treece, G., Berman, L.: Engineering a freehand 3D ultrasound system. Pattern Recogn. Lett. 24(4–5), 757–777 (2003)

    Article  Google Scholar 

  3. Goldsmith, A., Pedersen, P., Szabo, T.: An inertial-optical tracking system for portable, quantitative, 3D ultrasound. In: IEEE International Ultrasonics Symposium Proceedings, pp. 45–49 (2008)

    Google Scholar 

  4. Hartley, R., Zisserman, A.: Multiple View Geometry. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Hastenteufel, M., Vetter, M., Meinzer, H.P., Wolf, I.: Effect of 3D ultrasound probes on the accuracy of electromagnetic tracking systems. Ultrasound Med. Biol. 32(9), 1359–1368 (2006)

    Article  Google Scholar 

  6. Horvath, S., et al.: Towards an ultrasound probe with vision: structured light to determine surface orientation. In: Linte, C.A., Moore, J.T., Chen, E.C.S., Holmes, D.R. (eds.) AE-CAI 2011. LNCS, vol. 7264, pp. 58–64. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32630-1_6

    Chapter  Google Scholar 

  7. Ishii, J., Sakai, S., Ito, K., Aoki, T., Yanagi, T., Ando, T.: 3D reconstruction of urban environments using in-vehicle fisheye camera. In: Proceedings of the IEEE International Conference on Image Processing, pp. 2145–2148, September 2013

    Google Scholar 

  8. Ito, S., Ito, K., Aoki, T., Ohmiya, J., Kondo, S.: Probe localization using structure from motion for 3D ultrasound image reconstruction. In: Proceedings of the International Conference on Medical Imaging, pp. 68–71 (2017)

    Google Scholar 

  9. Kneip, L., Scaramuzza, D., Siegwart, R.: A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In: Proceedings of the International Conference Computer Vision and Pattern Recognition, pp. 2969–2976 (2011)

    Google Scholar 

  10. Lange, T., Kraft, S., Eulenstein, S., Lamecker, H., Schlag, P.: Automatic calibration of 3D ultrasound probes. In: Handels, H., Ehrhardt, J., Deserno, T., Meinzer, H.P., Tolxdorff, T. (eds.) Bildverarbeitung fur die Medizin 2011, pp. 169–173. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19335-4_36

    Chapter  Google Scholar 

  11. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)

    Article  Google Scholar 

  12. Rafii-Tari, H., Abolmaesumi, P., Rohling, R.: Panorama ultrasound for guiding epidural anesthesia: a feasibility study. In: Taylor, R.H., Yang, G.-Z. (eds.) IPCAI 2011. LNCS, vol. 6689, pp. 179–189. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21504-9_17

    Chapter  Google Scholar 

  13. Rousseau, F., Hellier, P., Barillot, C.: A fully automatic calibration procedure for freehand 3D ultrasound. In: Proceedings of the IEEE International Symposium Biomedical, Imaging, pp. 985–988 (2002)

    Google Scholar 

  14. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)

    Google Scholar 

  15. Stolka, P., Kang, H., Choti, M., Boctor, E.: Multi-DoF probe trajectory reconstruction with local sensors for 2D-to-3D ultrasound. In: Proceedings of the IEEE International Symposium Biomedical, Imaging, pp. 316–319 (2010)

    Google Scholar 

  16. Sun, S.-Y., Gilbertson, M., Anthony, B.W.: Probe localization for freehand 3D ultrasound by tracking skin features. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 365–372. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_46

    Google Scholar 

  17. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer-Verlag New York Inc., New York (2010). doi:10.1007/978-3-642-12848-6

    MATH  Google Scholar 

  18. Takita, K., Muquit, M.A., Aoki, T., Higuchi, T.: A sub-pixel correspondence search for computer vision applications. IEICE Trans. Fundam. E87–A(8), 1913–1923 (2004)

    Google Scholar 

  19. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vis. 13(2), 119–152 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ito, K., Yodokawa, K., Aoki, T., Ohmiya, J., Kondo, S. (2017). A Probe-Camera System for 3D Ultrasound Image Reconstruction. In: Cardoso, M., et al. Imaging for Patient-Customized Simulations and Systems for Point-of-Care Ultrasound. BIVPCS POCUS 2017 2017. Lecture Notes in Computer Science(), vol 10549. Springer, Cham. https://doi.org/10.1007/978-3-319-67552-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67552-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67551-0

  • Online ISBN: 978-3-319-67552-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics