Abstract
Recommending pertinent Place Of Interests (POIs) is a desirable feature for mobile users, and which is generally served by for-profit proprietary platforms, such as Yelp, TripAdvisor, etc. However, the siloed design of these platforms raises today several issues about privacy, user data portability, and algorithm transparency. To address these issues, we propose a decoupled recommender system (RS) architecture. The idea consists of externalizing the sensitive features, such as the users’ preferences and the underlying RS algorithm, from the service’s application. Hence, the proposed RS operates as an interchangeable third-party service. We conducted several experiments to evaluate the impact of the decentralization, and we were able to improve the performances by relying on Linked Open Data (LOD) and on an appropriate similarity measure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
References
Berners-Lee, T.: The web is under threat. Join us and fight for it. (2018). https://webfoundation.org/2018/03/web-birthday-29. Accessed 21 Dec 2019
Boja, U., Passant, A.: Weaving SIOC into the web of linked data. In: Proceedings of the Workshop on Linked Data on the Web (2008)
Boubenia, M., Belkhir, A., Bouyakoub, M.F.: A multi-level approach for mobile recommendation of services. In: Proceedings of the International Conference on Internet of Things and Cloud Computing, p. 40. ACM (2016). https://doi.org/10.1145/2896387.2896425
Cadwalladr, C., Graham-Harrison, E.: Revealed: 50 million Facebook profiles harvested for Cambridge Analytica in major data breach (Mar 2018). https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election. Accessed 21 Dec 2019
Cheniki, N., Belkhir, A., Sam, Y., Messai, N.: LODS: a linked open data based similarity measure. In: 2016 IEEE 25th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 229–234. IEEE (2016). https://doi.org/10.1109/WETICE.2016.58
Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 39–46. ACM (2010). https://doi.org/10.1145/1864708.1864721
Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff, M.: Gumo–the general user model ontology. In: User Modeling 2005, pp. 428–432. Springer, Heidelberg (2005). https://doi.org/10.1007/11527886_58
Hochmair, H.H., Juhász, L., Cvetojevic, S.: Data quality of points of interest in selected mapping and social media platforms. In: LBS 2018: 14th International Conference on Location Based Services, pp. 293–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-71470-7_15
Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901). https://doi.org/10.5169/seals-266450
Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_3
O’Donnell, A.: Why Sharing Your Location on Social Media Is a Bad Thing (2018). https://www.lifewire.com/why-sharing-your-location-on-social-media-is-a-bad-thing-2487165. Accessed 21 Dec 2019
Piao, G., Breslin, J.G.: Analyzing aggregated semantics-enabled user modeling on Google+ and Twitter for personalized link recommendations. In: Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization, pp. 105–109. ACM (2016). https://doi.org/10.1145/2930238.2930278
Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3
Riedl, J.: Personalization and privacy. IEEE Internet Comput. 5(6), 29–31 (2001). https://doi.org/10.1109/4236.968828
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975). https://doi.org/10.1145/361219.361220
Verborgh, R.: Re-decentralizing the web, for good this time. In: Seneviratne, O., Hendler, J. (eds.) Linking the World’s Information: Tim Berners-Lee’s Invention of the World Wide Web. ACM (2019). https://ruben.verborgh.org/articles/redecentralizing-the-web/
Zhang, J.: Anchoring effects of recommender systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 375–378. ACM (2011). https://doi.org/10.1145/2043932.2044010
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Boubenia, M., Bouyakoub, F.M., Belkhir, A. (2021). A User-Side POIs Mobile Recommender System. In: Senouci, M.R., Boudaren, M.E.Y., Sebbak, F., Mataoui, M. (eds) Advances in Computing Systems and Applications. CSA 2020. Lecture Notes in Networks and Systems, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-030-69418-0_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-69418-0_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69417-3
Online ISBN: 978-3-030-69418-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)