Nothing Special   »   [go: up one dir, main page]

Skip to main content

Content-based Recommender Systems: State of the Art and Trends

  • Chapter
  • First Online:
Recommender Systems Handbook

Abstract

Recommender systems have the effect of guiding users in a personalized way to interesting objects in a large space of possible options. Content-based recommendation systems try to recommend items similar to those a given user has liked in the past. Indeed, the basic process performed by a content-based recommender consists in matching up the attributes of a user profile in which preferences and interests are stored, with the attributes of a content object (item), in order to recommend to the user new interesting items. This chapter provides an overview of content-based recommender systems, with the aim of imposing a degree of order on the diversity of the different aspects involved in their design and implementation. The first part of the chapter presents the basic concepts and terminology of contentbased recommender systems, a high level architecture, and their main advantages and drawbacks. The second part of the chapter provides a review of the state of the art of systems adopted in several application domains, by thoroughly describing both classical and advanced techniques for representing items and user profiles. The most widely adopted techniques for learning user profiles are also presented. The last part of the chapter discusses trends and future research which might lead towards the next generation of systems, by describing the role of User Generated Content as a way for taking into account evolving vocabularies, and the challenge of feeding users with serendipitous recommendations, that is to say surprisingly interesting items that they might not have otherwise discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aciar, S., Zhang, D., Simoff, S., Debenham, J.: Informed Recommender: Basing Recommendations on Consumer Product Reviews. IEEE Intelligent Systems 22(3), 39–47 (2007)

    Article  Google Scholar 

  2. Ahn, J., Brusilovsky, P., Grady, J., He, D., Syn, S.Y.: Open User Profiles for Adaptive News Systems: Help or Harm? In: C.L.Williamson, M.E. Zurko, P.F. Patel-Schneider, P.J. Shenoy (eds.) Proceedings of the 16th International Conference on World Wide Web, pp. 11–20. ACM (2007)

    Google Scholar 

  3. Anderson, M.: Google Searches for Ad Dollars in Social Networks. IEEE Spectrum 45(12), 16 (2008)

    Article  Google Scholar 

  4. Asnicar, F., Tasso, C.: ifWeb: a Prototype of User Model-based Intelligent Agent for Documentation Filtering and Navigation in the Word Wide Web. In: C. Tasso, A. Jameson, C.L. Paris (eds.) Proceedings of the First International Workshop on Adaptive Systems and User Modeling on the World Wide Web, Sixth International Conference on User Modeling, pp. 3–12. Chia Laguna, Sardinia, Italy (1997)

    Google Scholar 

  5. Aurnhammer, M., Hanappe, P., Steels, L.: Integrating Collaborative Tagging and Emergent Semantics for Image Retrieval. In: Proceedings of the WWW 2006 Collaborative Web Tagging Workshop (2006)

    Google Scholar 

  6. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley (1999)

    Google Scholar 

  7. Balabanovic, M., Shoham, Y.: Fab: Content-based, Collaborative Recommendation. Communications of the ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  8. Basile, P., Degemmis, M., Gentile, A., Lops, P., Semeraro, G.: UNIBA: JIGSAW algorithm for Word Sense Disambiguation. In: Proceedings of the 4th ACL 2007 International Workshop on Semantic Evaluations (SemEval-2007), Prague, Czech Republic, pp. 398–401. Association for Computational Linguistics (2007)

    Google Scholar 

  9. Basile, P., de Gemmis, M., Gentile, A., Iaquinta, L., Lops, P., Semeraro, G.: An Electronic Performance Support System Based on a Hybrid Content-Collaborative Recommender System. Neural Network World: International Journal on Neural and Mass-Parallel Computing and Information Systems 17(6), 529–541 (2007)

    Google Scholar 

  10. Basile, P., de Gemmis, M., Gentile, A., Iaquinta, L., Lops, P.: The JUMP project: Domain Ontologies and Linguistic Knowledge @ Work. In: Proceedings of the 4th Italian Semantic Web Applications and Perspectives - SWAP 2007, CEUR Workshop Proceedings. CEURWS. org (2007)

    Google Scholar 

  11. Billsus, D., Pazzani, M.: Learning Probabilistic User Models. In: Proceedings of the Workshop on Machine Learning for User Modeling. Chia Laguna, IT (1997). URL citeseer.nj.nec.com/billsus96learning.html

    Google Scholar 

  12. Billsus, D., Pazzani, M.J.: A Hybrid User Model for News Story Classification. In: Proceedings of the Seventh International Conference on User Modeling.Banff, Canada (1999)

    Google Scholar 

  13. Billsus, D., Pazzani, M.J.: User Modeling for Adaptive News Access. User Modeling and User-Adapted Interaction 10(2-3), 147–180 (2000)

    Article  Google Scholar 

  14. Blanco-Fernandez, Y., Pazos-Arias J. J., G.S.A., Ramos-Cabrer, M., Lopez-Nores, M.: Providing Entertainment by Content-based Filtering and Semantic Reasoning in Intelligent Recommender Systems. IEEE Transactions on Consumer Electronics 54(2), 727–735 (2008)

    Google Scholar 

  15. Bollacker, K.D., Giles, C.L.: CiteSeer: An AutonomousWeb Agent for Automatic Retrieval and Identification of Interesting Publications. In: K. Sycara, M. Wooldridge (eds.) Proceedings of the Second International Conference on Autonomous Agents, pp. 116–123. ACM Press (1998)

    Google Scholar 

  16. Boone, G.: Concept Features in Re:Agent, an Intelligent Email Agent. In: K. Sycara, M. Wooldridge (eds.) Proceedings of the Second International Conference on Autonomous Agents, pp. 141–148. ACM Press (1998)

    Google Scholar 

  17. Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  18. Cantador, I., Bellogìn, A., Castells, P.: News@hand: A Semantic Web Approach to Recommending News. In: W. Nejdl, J. Kay, P. Pu, E. Herder (eds.) Adaptive Hypermedia and Adaptive Web-Based Systems, Lecture Notes in Computer Science, vol. 5149, pp. 279–283. Springer (2008)

    Google Scholar 

  19. Cantador, I., Szomszor, M., Alani, H., Fernandez, M., Castells, P.: Ontological User Profiles with Tagging History for Multi-Domain Recommendations. In: Proceedings of the Collective Semantics: Collective Intelligence and the SemanticWeb, CISWeb2008, Tenerife, Spain (2008)

    Google Scholar 

  20. Carmagnola, F., Cena, F., Cortassa, O., Gena, C., Torre, I.: Towards a Tag-Based User Model: How Can User Model Benefit from Tags? In: User Modeling 2007, Lecture Notes in Computer Science, vol. 4511, pp. 445–449. Springer (2007)

    Google Scholar 

  21. Celma, O., Ramìrez, M., Herrera, P.: Foafing the Music: A Music Recommendation System based on RSS Feeds and User Preferences. In: 6th International Conference on Music Information Retrieval (ISMIR), pp. 464–467. London, UK (2005)

    Google Scholar 

  22. Celma, O., Serra, X.: FOAFing the Music: Bridging the Semantic Gap in Music Recommendation. Web Semantics 6(4), 250–256 (2008)

    Google Scholar 

  23. Chen, L., Sycara, K.: WebMate: A Personal Agent for Browsing and Searching. In: K.P. Sycara, M. Wooldridge (eds.) Proceedings of the 2nd International Conference on Autonomous Agents, pp. 9–13. ACM Press, New York (1998)

    Google Scholar 

  24. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Combining Content-Based and Collaborative Filters in an Online Newspaper. In: Proceedings of ACM SIGIR Workshop on Recommender Systems (1999). URL citeseer.ist.psu.edu/ claypool99combining.html

    Google Scholar 

  25. 25 Collins, A.M., Loftus, E.F.: A Spreading Activation Theory of Semantic Processing. Psychological Review 82(6), 407–428 (1975)

    Article  Google Scholar 

  26. Csomai, A., Mihalcea, R.: Linking Documents to Encyclopedic Knowledge. IEEE Intelligent Systems 23(5), 34–41 (2008)

    Article  Google Scholar 

  27. Degemmis, M., Lops, P., Semeraro, G.: A Content-collaborative Recommender that ExploitsWordNet-based User Profiles for Neighborhood Formation. User Modeling and User- Adapted Interaction: The Journal of Personalization Research (UMUAI) 17(3), 217–255 (2007). Springer Science + Business Media B.V.

    Google Scholar 

  28. Diederich, J., Iofciu, T.: Finding Communities of Practice from User Profiles Based On Folksonomies. In: Innovative Approaches for Learning and Knowledge Sharing, EC-TEL Workshop Proc., pp. 288–297 (2006)

    Google Scholar 

  29. Domingos, P., Pazzani, M.J.: On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning 29(2-3), 103–130 (1997)

    Article  MATH  Google Scholar 

  30. Egozi, O., Gabrilovich, E., Markovitch, S.: Concept-Based Feature Generation and Selection for Information Retrieval. In: D. Fox, C.P. Gomes (eds.) Proceedings of the Twenty- Third AAAI Conference on Artificial Intelligence, AAAI 2008, pp. 1132–1137. AAAI Press (2008). ISBN 978-1-57735-368-3

    Google Scholar 

  31. Eirinaki, M., Vazirgiannis, M., Varlamis, I.: SEWeP: Using Site Semantics and a Taxonomy to enhance the Web Personalization Process. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 99–108. ACM (2003)

    Google Scholar 

  32. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998) 102 Pasquale Lops, Marco de Gemmis and Giovanni Semeraro

    Google Scholar 

  33. Firan, C.S., Nejdl, W., Paiu, R.: The Benefit of Using Tag-Based Profiles. In: Proceedings of the Latin American Web Conference, pp. 32–41. IEEE Computer Society, Washington, DC, USA (2007). DOI http://dx.doi.org/10.1109/LA-WEB.2007.24. ISBN 0-7695-3008-7

  34. Gabrilovich, E., Markovitch, S.: Overcoming the Brittleness Bottleneck using Wikipedia: Enhancing Text Categorization with Encyclopedic Knowledge. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, pp. 1301–1306. AAAI Press (2006)

    Google Scholar 

  35. Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis. In: M.M. Veloso (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 1606–1611 (2007)

    Google Scholar 

  36. Gemmis, M.d., Lops, P., Semeraro, G., Basile, P.: Integrating Tags in a Semantic Contentbased Recommender. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, Lausanne, Switzerland, October 23-25, 2008, pp. 163–170 (2008)

    Chapter  Google Scholar 

  37. Giles, J.: Internet Encyclopaedias Go Head to Head. Nature 438, 900–901 (2005)

    Article  Google Scholar 

  38. Godoy, D., Amandi, A.: Hybrid Content and Tag-based Profiles for Recommendation in Collaborative Tagging Systems. In: Proceedings of the 6th Latin American Web Congress (LA-WEB 2008), pp. 58–65. IEEE Computer Society (2008). ISBN 978-0-7695-3397-1

    Google Scholar 

  39. Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM 35(12), 61–70 (1992). URL http: //www.xerox.com/PARC/dlbx/tapestry-papers/TN44.ps. Special Issue on Information Filtering

  40. Golder, S., Huberman, B.A.: The Structure of Collaborative Tagging Systems. Journal of Information Science 32(2), 198–208 (2006)

    Article  Google Scholar 

  41. Gup, T.: Technology and the End of Serendipity. The Chronicle of Higher Education (44), 52 (1997)

    Google Scholar 

  42. Herlocker, L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)

    Article  Google Scholar 

  43. Holte, R.C., Yan, J.N.Y.: Inferring What a User Is Not Interested in. In: G.I. McCalla (ed.) Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol. 1081, pp. 159– 171 (1996). ISBN 3-540-61291-2

    Google Scholar 

  44. Iaquinta, L., de Gemmis, M., Lops, P., Semeraro, G., Filannino, M., Molino, P.: Introducing Serendipity in a Content-based Recommender System. In: F. Xhafa, F. Herrera, A. Abraham, M. K¨oppen, J.M. Benitez (eds.) Proceedings of the Eighth International Conference on Hybrid Intelligent Systems HIS-2008, pp. 168–173. IEEE Computer Society Press, Los Alamitos, California (2008)

    Chapter  Google Scholar 

  45. Joachims, T., Freitag, D., Mitchell, T.M.: Web Watcher: A Tour Guide for the World Wide Web. In: 15th International Joint Conference on Artificial Intelligence, pp. 770–777 (1997). URL citeseer.ist.psu.edu/article/joachims97webwatcher.html

    Google Scholar 

  46. Kim, S.B., Han, K.S., Rim, H.C., Myaeng, S.H.: Some Effective Techniques for Na¨ıve Bayes Text Classification. IEEE Trans. Knowl. Data Eng. 18(11), 1457–1466 (2006)

    Article  Google Scholar 

  47. Lees-Miller, J., Anderson, F., Hoehn, B., Greiner, R.: Does Wikipedia Information Help Netflix Predictions? In: Seventh International Conference on Machine Learning and Applications (ICMLA), pp. 337–343. IEEE Computer Society (2008). ISBN 978-0-7695-3495-4

    Google Scholar 

  48. Lewis, D.D., Ringuette, M.: A Comparison of Two Learning Algorithms for Text Categorization. In: Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, pp. 81–93. Las Vegas, US (1994)

    Google Scholar 

  49. Lieberman, H.: Letizia: an Agent that Assists Web Browsing. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 924–929. Morgan Kaufmann (1995)

    Google Scholar 

  50. Linden, G., Smith, B., York, J.: Amazon.com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing 7(1), 76–80 (2003)

    Article  Google Scholar 

  51. Magnini, B., Strapparava, C.: Experiments in Word Domain Disambiguation for Parallel Texts. In: Proc. of SIGLEX Workshop on Word Senses and Multi-linguality, Hong-Kong, October 2000. ACL (2000)

    Google Scholar 

  52. Magnini, B., Strapparava, C.: Improving User Modelling with Content-based Techniques. In: Proceedings of the 8th International Conference of User Modeling, pp. 74–83. Springer (2001)

    Google Scholar 

  53. Mak, H., Koprinska, I., Poon, J.: INTIMATE: A Web-Based Movie Recommender Using Text Categorization. In: Proceedings of the IEEE/WIC International Conference on Web Intelligence, pp. 602–605. IEEE Computer Society (2003). ISBN 0-7695-1932-6

    Google Scholar 

  54. McCallum, A., Nigam, K.: A Comparison of Event Models for Na¨ıve Bayes Text Classification. In: Proceedings of the AAAI/ICML-98Workshop on Learning for Text Categorization, pp. 41–48. AAAI Press (1998)

    Google Scholar 

  55. McNee, S.M., Riedl, J., Konstan, J.A.: Accurate is not Always Good: How Accuracy Metrics have hurt Recommender Systems. In: Extended Abstracts of the ACM Conference on Human Factors in Computing Systems (2006)

    Google Scholar 

  56. Melville, P., Mooney, R.J., Nagarajan, R.: Content-Boosted Collaborative Filtering for Improved Recommendations. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI-02), pp. 187–192. AAAI Press, Menlo Parc, CA, USA (2002)

    Google Scholar 

  57. Michlmayr, E., Cayzer, S.: Learning User Profiles from Tagging Data and Leveraging them for Personal(ized) Information Access. In: Proc. of the Workshop on Tagging and Metadata for Social Information Organization, Int. WWW Conf. (2007)

    Google Scholar 

  58. Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological User Profiling in Recommender Systems. ACM Transactions on Information Systems 22(1), 54–88 (2004)

    Article  Google Scholar 

  59. Mihalcea, R., Csomai, A.: Wikify!: Linking Documents to Encyclopedic Knowledge. In: Proceedings of the sixteenth ACM conference on Conference on Information and Knowledge Management, pp. 233–242. ACM, New York, NY, USA (2007). DOI http://doi.acm. org/10.1145/1321440.1321475. ISBN 978-1-59593-803-9

  60. Miller, G.: WordNet: An On-Line Lexical Database. International Journal of Lexicography 3(4) (1990). (Special Issue)

    Google Scholar 

  61. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    Google Scholar 

  62. Mladenic, D.: Machine learning used by PersonalWebWatcher. In: Proceedings of ACAI-99 Workshop on Machine Learning and Intelligent Agents (1999)

    Google Scholar 

  63. Mladenic, D.: Text-learning and Related Intelligent Agents: A Survey. IEEE Intelligent Systems 14(4), 44–54 (1999)

    Article  Google Scholar 

  64. Montaner, M., Lopez, B., Rosa, J.L.D.L.: A Taxonomy of Recommender Agents on the Internet. Artificial Intelligence Review 19(4), 285–330 (2003)

    Article  Google Scholar 

  65. Mooney, R.J., Roy, L.: Content-Based Book Recommending Using Learning for Text Categorization. In: Proceedings of the 5th ACM Conference on Digital Libraries, pp. 195–204. ACM Press, New York, US, San Antonio, US (2000)

    Google Scholar 

  66. Moukas, A.: Amalthaea Information Discovery and Filtering Using a Multiagent Evolving Ecosystem. Applied Artificial Intelligence 11(5), 437–457 (1997)

    Article  Google Scholar 

  67. Mukherjee, R., Jonsdottir, G., Sen, S., Sarathi, P.: MOVIES2GO: an Online Voting based Movie Recommender System. In: Proceedings of the Fifth International Conference on Autonomous Agents, pp. 114–115. ACM Press (2001)

    Google Scholar 

  68. Pazzani, M., Billsus, D.: Learning and Revising User Profiles: The Identification of Interesting Web Sites. Machine Learning 27(3), 313–331 (1997)

    Article  Google Scholar 

  69. Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems. In: P. Brusilovsky, A. Kobsa, W. Nejdl (eds.) The Adaptive Web, Lecture Notes in Computer Science, vol. 4321, pp. 325–341 (2007). ISBN 978-3-540-72078-2

    Google Scholar 

  70. Pazzani, M.J., Muramatsu, J., Billsus, D.: Syskill and Webert: Identifying Interesting Web Sites. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conference, pp. 54–61. AAAI Press / MIT Press, Menlo Park (1996)

    Google Scholar 

  71. Picard, R.W.: Affective Computing. MIT Press (2000)

    Google Scholar 

  72. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proceedings of ACM 1994 Conference 104 Pasquale Lops, Marco de Gemmis and Giovanni Semeraro on Computer Supported CooperativeWork, pp. 175–186. ACM, Chapel Hill, North Carolina (1994). URL citeseer.ist.psu.edu/resnick94grouplens.html

    Google Scholar 

  73. Resnick, P., Varian, H.: Recommender Systems. Communications of the ACM 40(3), 56–58 (1997)

    Article  Google Scholar 

  74. Rich, E.: User Modeling via Stereotypes. Cognitive Science 3, 329–354 (1979)

    Article  Google Scholar 

  75. Rocchio, J.: Relevance Feedback Information Retrieval. In: G. Salton (ed.) The SMART retrieval system - experiments in automated document processing, pp. 313–323. Prentice- Hall, Englewood Cliffs, NJ (1971)

    Google Scholar 

  76. Rokach, L., Maimon, O., Data Mining with Decision Trees: Theory and Applications,World Scientific Publishing (2008).

    Google Scholar 

  77. Sahlgren, M.: The Word-Space Model: Using Distributional Analysis to Represent Syntagmatic and Paradigmatic Relations betweenWords in High-dimensional Vector Spaces. Ph.D. thesis, Stockholm: Stockholm University, Faculty of Humanities, Department of Linguistics (2006)

    Google Scholar 

  78. Salter, J., Antonoupoulos, N.: CinemaScreen Recommender Agent: Combining collaborative and content-based filtering. IEEE Intelligent Systems 21(1), 35–41 (2006)

    Article  Google Scholar 

  79. Salton, G.: Automatic Text Processing. Addison-Wesley (1989)

    Google Scholar 

  80. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)

    Google Scholar 

  81. Schwab, I., Kobsa, A., Koychev, I.: Learning User Interests through Positive Examples using Content Analysis and Collaborative Filtering (2001). URL citeseer.ist.psu.edu/schwab01learning.html

    Google Scholar 

  82. Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys34(1)(2002)

    Google Scholar 

  83. Semeraro, G., Basile, P., de Gemmis, M., Lops, P.: User Profiles for Personalizing Digital Libraries. In: Y.L. Theng, S. Foo, D.G.H. Lian, J.C. Na (eds.) Handbook of Research on Digital Libraries: Design, Development and Impact, pp. 149–158. IGI Global (2009). ISBN 978-159904879-6

    Google Scholar 

  84. Semeraro, G., Degemmis, M., Lops, P., Basile, P.: Combining Learning and Word Sense Disambiguation for Intelligent User Profiling. In: M.M. Veloso (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 2856–2861 (2007). ISBN 978-I-57735-298-3

    Google Scholar 

  85. Semeraro, G., Lops, P., Basile, P., Gemmis, M.d.: Knowledge Infusion into Content-based Recommender Systems. In: Proceedings of the 2009 ACM Conference on Recommender Systems, RecSys 2009, New York, USA, October 22-25, 2009 (2009). To appear

    Google Scholar 

  86. Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating “Word of Mouth”. In: Proceedings of ACM CHI’95 Conference on Human Factors in Computing Systems, vol. 1, pp. 210–217 (1995). URL citeseer.ist.psu.edu/ shardanand95social.html

    Google Scholar 

  87. Sheth, B., Maes, P.: Evolving Agents for Personalized Information Filtering. In: Proceedings of the Ninth Conference on Artificial Intelligence for Applications, pp. 345–352. IEEE Computer Society Press (1993)

    Google Scholar 

  88. Smirnov, A.V., Krizhanovsky, A.: Information Filtering based on Wiki Index Database. CoRR abs/0804.2354 (2008)

    Google Scholar 

  89. Smith, B., Cotter, P.: A Personalized TV Listings Service for the Digital TV Age. Knowledge-Based Systems 13, 53–59 (2000)

    Article  Google Scholar 

  90. Sorensen, H., McElligott, M.: PSUN: A Profiling System for Usenet News. In: Proceedings of CIKM ’95 Intelligent Information Agents Workshop (1995)

    Google Scholar 

  91. Sorensen, H., O’Riordan, A., O’Riordan, C.: Profiling with the INFOrmer Text Filtering Agent. Journal of Universal Computer Science 3(8), 988–1006 (1997)

    Google Scholar 

  92. Stefani, A., Strapparava, C.: Personalizing Access toWeb Sites: The SiteIF Project. In: Proc. of second Workshop on Adaptive Hypertext and Hypermedia, Pittsburgh, June 1998 (1998)

    Google Scholar 

  93. Straffin, P.D.J.: Topics in the Theory of Voting. The UMAP expository monograph series. Birkhauser (1980)

    Google Scholar 

  94. Symeonidis, P.: Content-based Dimensionality Reduction for Recommender Systems. In: C. Preisach, H. Burkhardt, L. Schmidt-Thieme, R. Decker (eds.) Data Analysis, Machine Learning and Applications, Studies in Classification, Data Analysis, and Knowledge Organization, pp. 619–626. Springer Berlin Heidelberg (2008). ISBN 978-3-540-78239-1

    Google Scholar 

  95. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag Recommendations based on Tensor Dimensionality Reduction. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, Lausanne, Switzerland, October 23-25, 2008, pp. 43–50 (2008)

    Google Scholar 

  96. Szomszor, M., Cattuto, C., Alani, H., O’Hara, K., Baldassarri, A., Loreto, V., Servedio, V.D.P.: Folksonomies, the Semantic Web, and Movie Recommendation. In: Proceedings of the Workshop on Bridging the Gap between Semantic Web and Web 2.0 at the 4th ESWC (2007)

    Google Scholar 

  97. Toms, E.: Serendipitous Information Retrieval. In: Proceedings of DELOS Workshop: Information Seeking, Searching and Querying in Digital Libraries (2000)

    Google Scholar 

  98. Tso-Sutter, K.H.L., Marinho, L.B., Schmidt-Thieme, L.: Tag-aware Recommender Systems by Fusion of Collaborative Filtering Algorithms. In: SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing, pp. 1995–1999. ACM (2008). ISBN 978-1-59593-753-7

    Google Scholar 

  99. Wasfi, A.M.: Collecting User Access Patterns for Building User Profiles and Collaborative Filtering. In: Proceedings of the International Conference on Intelligent User Interfaces, pp. 57–64 (1999)

    Google Scholar 

  100. Witten, I.H., Bell, T.: The Zero-frequency Problem: Estimating the Probabilities of Novel Events in Adaptive Text Compression. IEEE Transactions on Information Theory 37(4) (1991)

    Google Scholar 

  101. Yang, Y., Pedersen, J.O.: A Comparative Study on Feature Selection in Text Categorization. In: D.H. Fisher (ed.) Proceedings of ICML-97, 14th International Conference on Machine Learning, pp. 412–420. Morgan Kaufmann Publishers, San Francisco, US, Nashville, US (1997). URL citeseer.ist.psu.edu/yang97comparative.html

    Google Scholar 

  102. Yeung, C.M.A., Gibbins, N., Shadbolt, N.: A Study of User Profile Generation from Folksonomies. In: Proc. of the Workshop on Social Web and Knowledge Management, WWW Conf. (2008)

    Google Scholar 

  103. Zhang, Y., Callan, J., Minka, T.: Novelty and Redundancy Detection in Adaptive Filtering. In: Proceedings of the 25th International ACM SIGIR Conference, pp. 81–88 (2002)

    Google Scholar 

  104. Zhao, S., Du, N., Nauerz, A., Zhang, X., Yuan, Q., Fu, R.: Improved Recommendation based on Collaborative Tagging Behaviors. In: Proceedings of International Conference on Intelligent User Interfaces, IUI, pp. 413–416. ACM (2008). ISBN 978-1-59593-987-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Lops .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lops, P., de Gemmis, M., Semeraro, G. (2011). Content-based Recommender Systems: State of the Art and Trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds) Recommender Systems Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85820-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85820-3_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85819-7

  • Online ISBN: 978-0-387-85820-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics