Abstract
Data anonymization is the process of making information contained in a group of data such that it is not possible to identify unique references to single elements in the group after the process. This action, when conducted onto datasets used to make statistical inference is bound to have ananlogous behaviours on certain indices before and after the process itself. In this paper we study the pipeline of anonymization process for datasets, when this pipeline is managed on cloud technology, where cryptography is not applicable at all, for datasets being available in an open setting. We examine the open problems, and devise a method to address these problems in a logical framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We introduce here the notion of analytical properties in terms of statistical measures, the most common properties desired in dataset anonymization.
References
Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD Rec. 34(3), 31–36 (2005)
Buneman, P., Khanna, S., Wang-Chiew, T.: Why and where: a characterization of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-X_20
Buneman, P., Khanna, S., Tan, W.-C.: Data provenance: some basic issues. In: Kapoor, S., Prasad, S. (eds.) FSTTCS 2000. LNCS, vol. 1974, pp. 87–93. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44450-5_6
Lima, R., Espinasse, B., Freitas, F.: A logic-based relational learning approach to relation extraction: the ontoilper system. Eng. Appl. Artif. Intell. 78, 142–157 (2019)
Kazmi, M., Schueller, P., Saygin, Y.: Improving scalability of inductive logic programming via pruning and best-effort optimisation. Expert Syst. Appl. 87, 291–303 (2017)
Lisi, F., Malerba, D.: Inducing multi-level association rules from multiple relations. Mach. Learn. 55(2), 175–210 (2004)
Lisi, F.: Building rules on top of ontologies for the semantic web with inductive logic programming. Theory Pract. Log. Program. 8(3), 271–300 (2008)
Lisi, F.: Inductive logic programming in databases: From datalog to dl+log. Theory Pract. Log. Program. 10(3), 331–359 (2010)
Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Log. 7(3), 329–340 (2009)
Sakama, C.: Induction from answer sets in nonmonotonic logic programs. ACM Trans. Comput. Log. 6(2), 203–231 (2005)
Sakama, C., Inoue, K.: Brave induction: a logical framework for learning from incomplete information. Mach. Learn. 76(1), 3–35 (2009)
Sakama, C.: Nonmonotomic inductive logic programming. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 62–80. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45402-0_5
Zorzi, M., Combi, C., Lora, R., Pagliarini, M., Moretti, U.: Automagically encoding adverse drug reactions in MedDRA, pp. 90–99 (2015). [26]
Zorzi, M., Combi, C., Pozzani, G., Arzenton, E., Moretti, U.: A co-occurrence based MedDRA terminology generation: some preliminary results. In: ten Teije, A., Popow, C., Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS (LNAI), vol. 10259, pp. 215–220. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59758-4_24
Zorzi, M., Combi, C., Pozzani, G., Moretti, U.: Mapping free text into MedDRA by natural language processing: a modular approach in designing and evaluating software extensions, pp. 27–35 (2017). [28]
Tomazzoli, C., Cristani, M., Karafili, E., Olivieri, F.: Non-monotonic reasoning rules for energy efficiency. J. Ambient Intell. Smart Environ. 9(3), 345–360 (2017)
Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S., Cristani, M.: Picking up the best goal an analytical study in defeasible logic. In: Morgenstern, L., Stefaneas, P., Lévy, F., Wyner, A., Paschke, A. (eds.) RuleML 2013. LNCS, vol. 8035, pp. 99–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39617-5_12
Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Superiority based revision of defeasible theories. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 104–118. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16289-3_10
Cristani, M., Tomazzoli, C., Karafili, E., Olivieri, F.: Defeasible reasoning about electric consumptions, pp. 885–892 (May 2016)
Burato, E., Cristani, M.: The process of reaching agreement in meaning negotiation. In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence VII. LNCS, vol. 7270, pp. 1–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32066-8_1
Burato, E., Cristani, M., Viganò, L.: A deduction system for meaning negotiation. In: Omicini, A., Sardina, S., Vasconcelos, W. (eds.) DALT 2010. LNCS (LNAI), vol. 6619, pp. 78–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20715-0_5
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Cristani, M., Tomazzoli, C. (2020). Dataset Anonyization on Cloud: Open Problems and Perspectives. In: Brambilla, M., Cappiello, C., Ow, S. (eds) Current Trends in Web Engineering. ICWE 2019. Lecture Notes in Computer Science(), vol 11609. Springer, Cham. https://doi.org/10.1007/978-3-030-51253-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-51253-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51252-1
Online ISBN: 978-3-030-51253-8
eBook Packages: Computer ScienceComputer Science (R0)