Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dataset Anonyization on Cloud: Open Problems and Perspectives

  • Conference paper
  • First Online:
Current Trends in Web Engineering (ICWE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11609))

Included in the following conference series:

  • 275 Accesses

Abstract

Data anonymization is the process of making information contained in a group of data such that it is not possible to identify unique references to single elements in the group after the process. This action, when conducted onto datasets used to make statistical inference is bound to have ananlogous behaviours on certain indices before and after the process itself. In this paper we study the pipeline of anonymization process for datasets, when this pipeline is managed on cloud technology, where cryptography is not applicable at all, for datasets being available in an open setting. We examine the open problems, and devise a method to address these problems in a logical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We introduce here the notion of analytical properties in terms of statistical measures, the most common properties desired in dataset anonymization.

References

  1. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD Rec. 34(3), 31–36 (2005)

    Article  Google Scholar 

  2. Buneman, P., Khanna, S., Wang-Chiew, T.: Why and where: a characterization of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-X_20

    Chapter  Google Scholar 

  3. Buneman, P., Khanna, S., Tan, W.-C.: Data provenance: some basic issues. In: Kapoor, S., Prasad, S. (eds.) FSTTCS 2000. LNCS, vol. 1974, pp. 87–93. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44450-5_6

    Chapter  Google Scholar 

  4. Lima, R., Espinasse, B., Freitas, F.: A logic-based relational learning approach to relation extraction: the ontoilper system. Eng. Appl. Artif. Intell. 78, 142–157 (2019)

    Article  Google Scholar 

  5. Kazmi, M., Schueller, P., Saygin, Y.: Improving scalability of inductive logic programming via pruning and best-effort optimisation. Expert Syst. Appl. 87, 291–303 (2017)

    Article  Google Scholar 

  6. Lisi, F., Malerba, D.: Inducing multi-level association rules from multiple relations. Mach. Learn. 55(2), 175–210 (2004)

    Article  MATH  Google Scholar 

  7. Lisi, F.: Building rules on top of ontologies for the semantic web with inductive logic programming. Theory Pract. Log. Program. 8(3), 271–300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lisi, F.: Inductive logic programming in databases: From datalog to dl+log. Theory Pract. Log. Program. 10(3), 331–359 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Log. 7(3), 329–340 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sakama, C.: Induction from answer sets in nonmonotonic logic programs. ACM Trans. Comput. Log. 6(2), 203–231 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sakama, C., Inoue, K.: Brave induction: a logical framework for learning from incomplete information. Mach. Learn. 76(1), 3–35 (2009)

    Article  Google Scholar 

  12. Sakama, C.: Nonmonotomic inductive logic programming. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 62–80. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45402-0_5

    Chapter  MATH  Google Scholar 

  13. Zorzi, M., Combi, C., Lora, R., Pagliarini, M., Moretti, U.: Automagically encoding adverse drug reactions in MedDRA, pp. 90–99 (2015). [26]

    Google Scholar 

  14. Zorzi, M., Combi, C., Pozzani, G., Arzenton, E., Moretti, U.: A co-occurrence based MedDRA terminology generation: some preliminary results. In: ten Teije, A., Popow, C., Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS (LNAI), vol. 10259, pp. 215–220. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59758-4_24

    Chapter  Google Scholar 

  15. Zorzi, M., Combi, C., Pozzani, G., Moretti, U.: Mapping free text into MedDRA by natural language processing: a modular approach in designing and evaluating software extensions, pp. 27–35 (2017). [28]

    Google Scholar 

  16. Tomazzoli, C., Cristani, M., Karafili, E., Olivieri, F.: Non-monotonic reasoning rules for energy efficiency. J. Ambient Intell. Smart Environ. 9(3), 345–360 (2017)

    Article  Google Scholar 

  17. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S., Cristani, M.: Picking up the best goal an analytical study in defeasible logic. In: Morgenstern, L., Stefaneas, P., Lévy, F., Wyner, A., Paschke, A. (eds.) RuleML 2013. LNCS, vol. 8035, pp. 99–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39617-5_12

    Chapter  MATH  Google Scholar 

  18. Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Superiority based revision of defeasible theories. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 104–118. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16289-3_10

    Chapter  Google Scholar 

  19. Cristani, M., Tomazzoli, C., Karafili, E., Olivieri, F.: Defeasible reasoning about electric consumptions, pp. 885–892 (May 2016)

    Google Scholar 

  20. Burato, E., Cristani, M.: The process of reaching agreement in meaning negotiation. In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence VII. LNCS, vol. 7270, pp. 1–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32066-8_1

    Chapter  Google Scholar 

  21. Burato, E., Cristani, M., Viganò, L.: A deduction system for meaning negotiation. In: Omicini, A., Sardina, S., Vasconcelos, W. (eds.) DALT 2010. LNCS (LNAI), vol. 6619, pp. 78–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20715-0_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Cristani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cristani, M., Tomazzoli, C. (2020). Dataset Anonyization on Cloud: Open Problems and Perspectives. In: Brambilla, M., Cappiello, C., Ow, S. (eds) Current Trends in Web Engineering. ICWE 2019. Lecture Notes in Computer Science(), vol 11609. Springer, Cham. https://doi.org/10.1007/978-3-030-51253-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51253-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51252-1

  • Online ISBN: 978-3-030-51253-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics