Abstract
Cloud computing and Big Data, two disruptive trends at present, pose significant influence on current IT industry and research communities. Cloud computing provides massive computation power and storage capacity which enable users to deploy applications without infrastructure investment
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amazon Web Services (2013) Amazon elastic MapReduce (Amazon EMR). http://aws.amazon.com/elasticmapreduce/. Accessed on 10 Mar 2013
Apache (2013) Apache Mahout machine learning library. http://mahout.apache.org/. Accessed on 10 Mar 2013
Bayardo RJ, Agrawal R (2005) Data privacy through optimal k-anonymization. In: Proceedings of the 21st IEEE international conference on data, engineering (ICDE’05), pp 217–228
Bhatotia P, Wieder A, Rodrigues R, Acar UA, Pasquin R (2011) Incoop: MapReduce for incremental computations. In: Proceedings of the 2nd ACM symposium on cloud, computing (SoCC’11), pp 1–14
Blass E-O, Pietro RD, Molva R, Önen M (2012) PRISM–privacy-preserving search in MapReduce. In: Proceedings of the 12th international conference on privacy enhancing technologies (PETS’12), pp 180–200
Borkar V, Carey MJ, Li C (2012) Inside "Big Data Management": ogres, onions, or parfaits? In: Proceedings of the 15th international conference on extending database technology (EDBT’12), pp 3–14
Bu Y, Howe B, Balazinska M, Ernst MD (2012) The HaLoop approach to large-scale iterative data analysis. VLDB J 21(2):169–190
Cao N, Wang C, Li M, Ren K, Lou W (2011) Privacy-preserving multi-keyword ranked search over encrypted cloud data. In: Proceedings of the 31st annual IEEE international conference on, computer communications (INFOCOM’11), pp 829–837
Chaudhuri S (2012) What next?: A half-dozen data management research goals for big data and the cloud. In: Proceedings of the 31st symposium on principles of database systems (PODS’12), pp 1–4
Davidson SB, Khanna S, Milo T, Panigrahi D, Roy S (2011) Provenance views for module privacy. In: Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems (PODS’11), pp 175–186
Dean J, Ghemawat S (2010) MapReduce: a flexible data processing tool. Commun ACM 53(1):72–77
Doka K, Tsoumakos d, Koziris N (2011) KANIS: preserving k-anonymity over distributed data. In the 5th international workshop on personalized access, profile management, and context awareness in databases (PersDB’11), Seattle, WA, USA
Dwork C (2006) Differential privacy. In: Proceedings of the 33rd international colloquium on automata, languages and programming (ICALP’06), pp 1–12
Ekanayake J, Li H, Zhang B, Gunarathne T, Bae S-H, Qiu J, Fox G (2010) Twister: a runtime for iterative MapReduce. In: Proceedings of the 19th ACM international symposium on high performance, distributed computing (HDPC’10), pp 810–818
Fung BCM, Wang K, Chen R, Yu PS (2010) Privacy-preserving data publishing: a survey of recent developments. ACM Comput Surv 42(4):1–53
Fung BCM, Wang K, Yu PS (2007) Anonymizing classification data for privacy preservation. IEEE Trans Knowl Data Eng 19(5):711–725
Gentry C (2009) Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st annual ACM symposium on theory of, computing (STOC’09), pp 169–178
Hadoop (2013) http://hadoop.apache.org. Accessed on 10 Mar 2013
Hu H, Xu J, Ren C, Choi B (2011) Processing private queries over untrusted data cloud through privacy homomorphism. In: Proceedings of the IEEE 27th international conference on data, engineering (ICDE’11), pp 601–612
Ko SY, Jeon K, Morales R (2011) The hybrex model for confidentiality and privacy in cloud computing. In: Proceedings of the 3rd USENIX conference on hot topics in cloud computing (HotCloud’11), article 8
KVM (2013) http://www.linux-kvm.org/page/Main_Page. Accessed on 10 Mar 2013
LeFevre K, DeWitt DJ, Ramakrishnan R (2005) Incognito: efficient full-domain k-anonymity. In: Proceedings of 2005 ACM SIGMOD international conference on management of data (SIGMOD ’05), pp 49–60
LeFevre K, DeWitt DJ, Ramakrishnan R (2006) Mondrian multidimensional k-anonymity. In: Proceedings of 22nd international conference on data engineering (ICDE ’06), article 25
Li M, Yu S, Cao N, Lou W (2011) Authorized private keyword search over encrypted data in cloud computing. In: Proceedings of the 31st international conference on distributed, computing systems (ICDCS’11), pp 383–392
Li N, Li T, Venkatasubramanian S (2010) Closeness: a new privacy measure for data publishing. IEEE Trans Knowl Data Eng 22(7):943–956
Machanavajjhala A, Kifer D, Gehrke D, Venkitasubramaniam M (2007) L-diversity: privacy beyond k-anonymity. ACM Trans Knowl Discov Data 1(1): article 3
Mell P, Grance T (2009) The NIST definition of cloud computing (Version 15). National Institute of Standards and Technology, Information Technology Laboratory, U.S.
MicroSoft (2013) Windows Azure. http://www.windowsazure.com/en-us/. Accessed on 10 Mar 2013
Microsoft HealthVault (2013) http://www.microsoft.com/health/ww/products/Pages/healthvault.aspx. Accessed on 10 Mar 2013
Mohammed N, Fung B, Hung PCK, Lee CK (2010) Centralized and distributed anonymization for high-dimensional healthcare data. ACM Trans Knowl Discov Data 4(4): article 18
Muniswamy-Reddy K-K, Macko P, Seltzer M (2010) Provenance for the cloud. In: Proceedings of the 8th USENIX conference on file and storage technologies (FAST’10), pp 197–210
Neuman BC, Ts’o T (1994) Kerberos: an authentication service for computer networks. IEEE Commun Mag 32(9):33–38
OpenStack (2013) http://openstack.org/. Accessed on 10 Mar 2013
Pei J, Xu J, Wang Z, Wang W, Wang K (2007) Maintaining k-anonymity against incremental updates. In: Proceedings of the 19th international conference on scientific and statistical database management (SSBDM ’07), pp article 5
Puttaswamy KPN, Kruegel C, Zhao BY (2011) Silverline: toward data confidentiality in storage-intensive cloud applications. In: Proceedings of the 2nd ACM symposium on cloud computing (SoCC’11), article 10
Roy I, Setty STV, Kilzer A, Shmatikov V, Witchel E (2010) Airavat: security and privacy for MapReduce. In: Proceedings of 7th USENIX conference on networked systems design and implementation (NSDI’10), pp 297–312
Shvachko K, Hairong K, Radia S, Chansler R (2010) The Hadoop distributed file system. In: Proceedings of 2010 IEEE 26th Symposium on mass storage systems and technologies (MSST’10), pp 1–10
Sweeney L (2002) K-anonymity: a model for protecting privacy. Int J Uncertainty Fuzziness Knowl Based Syst 10(5):557–570
UCI machine learning repository. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/. Accessed on 10 Mar 2013
Wei W, Juan D, Ting Y, Xiaohui G (2009) SecureMR: a service integrity assurance framework for MapReduce. In: Proceedings of annual computer security applications conference (ACSAC ’09), pp 73–82
Xiao X, Tao Y (2006) Anatomy: simple and effective privacy preservation. In; Proceedings of 32nd international conference on very large data bases (VLDB’06), pp 139–150
Xiao Z, Xiao Y (2011) Accountable MapReduce in cloud computing. In; Proceedings of the 2011 IEEE conference on computer communications workshops (INFOCOM WKSHPS), pp 1082–1087
Xu J, Wang W, Pei J, Wang X, Shi B, Fu AWC (2006) Utility-based anonymization using local recoding. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data (KDD’06), pp 785–790
Yuan D, Yang Y, Liu X, Chen J (2010) A cost-effective strategy for intermediate data storage in scientific cloud corkflow systems. In: Proceedings of the 2010 IEEE international symposium on parallel and distributed processing (IPDPS’10), pp 1–12
Yuan D, Yang Y, Liu X, Chen J (2011) On-demand minimum cost benchmarking for intermediate dataset storage in scientific cloud workflow systems. J Parallel Distrib Comput 71(2):316–332
Zhang K, Zhou X, Chen Y, Wang X, Ruan Y (2011) Sedic: privacy-aware data intensive computing on hybrid clouds. In: Proceedings of 18th ACM conference on computer and communications, security (CCS’11), pp 515–526
Zhang X, Liu C, Nepal S, Pandey S, Chen J (2012) A privacy leakage upper-bound constraint based approach for cost-effective privacy preserving of intermediate datasets in cloud. IEEE Trans Parallel Distrib Syst 24(4): 1192–1202
Zhang X, Liu C, Nepal S, Chen J (2013) An efficient quasi-identifier index based approach for privacy preservation over incremental data sets on cloud. J Comput Syst Sci 79(5):542–555
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Zhang, X., Liu, C., Nepal, S., Yang, C., Chen, J. (2014). Privacy Preservation over Big Data in Cloud Systems. In: Nepal, S., Pathan, M. (eds) Security, Privacy and Trust in Cloud Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38586-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-38586-5_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38585-8
Online ISBN: 978-3-642-38586-5
eBook Packages: EngineeringEngineering (R0)