Nothing Special   »   [go: up one dir, main page]

Skip to main content

Detecting Neurodegenerative Disease from MRI: A Brief Review on a Deep Learning Perspective

  • Conference paper
  • First Online:
Brain Informatics (BI 2019)

Abstract

Rapid development of high speed computing devices and infrastructure along with improved understanding of deep machine learning techniques during the last decade have opened up possibilities for advanced analysis of neuroimaging data. Using those computing tools Neuroscientists now can identify Neurodegenerative diseases from neuroimaging data. Due to the similarities in disease phenotypes, accurate detection of such disorders from neuroimaging data is very challenging. In this article, we have reviewed the methodological research papers proposing to detect neurodegenerative diseases using deep machine learning techniques only from MRI data. The results show that deep learning based techniques can detect the level of disorder with relatively high accuracy. Towards the end, current challenges are reviewed and some possible future research directions are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amoroso, N., et al.: Deep learning reveals Alzheimer’s disease onset in MCI subjects: results from an international challenge. J. Neurosci. Methods 302, 3–9 (2018)

    Article  Google Scholar 

  2. Basaia, S., et al.: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and DNN. Neuroimage Clin. 21, 101645 (2019)

    Article  Google Scholar 

  3. Bohle, M.: Layer-wise relevance propagation for explaining DNN decisions in MRI-based Alzheimer’s disease classification. Front. Aging Neurosci. 11, 194 (2019)

    Article  Google Scholar 

  4. Brown, C.J., Hamarneh, G.: Machine learning on human connectome data from MRI. CoRR abs/1611.08699 (2016)

    Google Scholar 

  5. Bäckström, K., et al.: An efficient 3D deep convolutional network for Alzheimer’s disease diagnosis using MR images. In: Proceedings of the ISBI 2018, pp. 149–153 (2018)

    Google Scholar 

  6. Dakka, J., et al.: Learning neural markers of schizophrenia disorder using recurrent neural networks. CoRR abs/1712.00512 (2017)

    Google Scholar 

  7. Dolph, C.V., Alam, M., Shboul, Z., Samad, M.D., Iftekharuddin, K.M.: Deep learning of texture and structural features for multiclass Alzheimer’s disease classification. In: Proceedings of the IJCNN 2017, pp. 2259–2266 (2017)

    Google Scholar 

  8. Esmaeilzadeh, S., Yang, Y., Adeli, E.: End-to-end Parkinson disease diagnosis using brain MR-images by 3D-CNN. CoRR abs/1806.05233 (2018)

    Google Scholar 

  9. Farooq, A., Anwar, S., Awais, M., Rehman, S.: A deep CNN based multi-class classification of Alzheimer’s disease using MRI. In: Proceedings of the IEEE IST 2017, pp. 1–6 (2017)

    Google Scholar 

  10. Gottapu, R.D., Dagli, C.H.: Analysis of Parkinson’s disease data. Proc. Comput. Sci. 140, 334–341 (2018)

    Article  Google Scholar 

  11. Han, S., et al.: Recognition of early-onset schizophrenia using deep-learning method. Appl. Inform. 4(1), 16 (2017)

    Article  Google Scholar 

  12. Islam, J., Zhang, Y.: A novel deep learning based multi-class classification method for Alzheimer’s disease detection using brain MRI data. In: Zeng, Y., et al. (eds.) BI 2017. LNCS, vol. 10654, pp. 213–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70772-3_20

    Chapter  Google Scholar 

  13. Kim, J., et al.: Deep NN with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. NeuroImage 124, 127–146 (2015)

    Article  Google Scholar 

  14. Kollia, I., Stafylopatis, A., Kollias, S.D.: Predicting Parkinson’s disease using latent information extracted from deep neural networks. CoRR abs/1901.07822 (2019)

    Google Scholar 

  15. Kollias, D., et al.: Deep neural architectures for prediction in healthcare. Complex Intell. Syst. 4(2), 119–131 (2018)

    Article  MathSciNet  Google Scholar 

  16. Latha, M., Kavitha, G.: Detection of Schizophrenia in brain MR images based on segmented ventricle region and DBNs. Neural Comput. Appl. 31, 5195–5206 (2018)

    Article  Google Scholar 

  17. Li, H., Fan, Y.: Early prediction of Alzheimer’s disease dementia based on baseline hippocampal MRI and 1-year follow-up cognitive measures using deep recurrent neural networks. CoRR abs/1901.01451 (2019)

    Google Scholar 

  18. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  19. Luo, S., Li, X., Li, J.: Automatic Alzheimer’s disease recognition from MRI data using deep learning method. J. Appl. Math. Phys. 05, 1892–1898 (2017)

    Article  Google Scholar 

  20. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  21. Mahmud, M., Vassanelli, S.: Processing and analysis of multichannel extracellular neuronal signals: state-of-the-art and challenges. Front. Neurosci. 10(JUN), 248 (2016). https://doi.org/10.3389/fnins.2016.00248

    Article  Google Scholar 

  22. Mahmud, M., Vassanelli, S.: Open-source tools for processing and analysis of in vitro extracellular neuronal signals. In: Chiappalone, M., Pasquale, V., Frega, M. (eds.) In Vitro Neuronal Networks. AN, vol. 22, pp. 233–250. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11135-9_10

    Chapter  Google Scholar 

  23. Mathew, N.A., Vivek, R.S., Anurenjan, P.R.: Early diagnosis of Alzheimer’s disease from MRI images using PNN. In: Proceedings of the IC4, pp. 161–164 (2018)

    Google Scholar 

  24. Matsubara, T., et al.: Deep neural generative model of functional MRI images for psychiatric disorder diagnosis. IEEE Trans. Biomed. Eng. 66(10), 2768–79 (2019)

    Article  Google Scholar 

  25. Patel, P., Aggarwal, P., Gupta, A.: Classification of schizophrenia versus normal subjects using deep learning. In: Proceedings of the ICVGIP, India, pp. 281–286 (2016)

    Google Scholar 

  26. Payan, A., Montana, G.: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. CoRR abs/1502.02506 (2015)

    Google Scholar 

  27. Pinaya, W.H., et al.: Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci. Rep. 6, 38897 (2016)

    Article  Google Scholar 

  28. Poldrack, R., et al.: Computational and informatic advances for reproducible data analysis in neuroimaging. Annu. Rev. Biomed. Data Sci. 2, 119–138 (2019)

    Article  Google Scholar 

  29. Qi, J., Tejedor, J.: Deep multi-view representation learning for multi-modal features of the schizophrenia and schizo-affective disorder. In: Proceedings of the IEEE ICASSP, pp. 952–956 (2016)

    Google Scholar 

  30. Qiu, Y., et al.: Classification of schizophrenia patients and healthy controls using ICA of complex-valued fMRI data and convolutional neural networks. In: Lu, H., Tang, H., Wang, Z. (eds.) ISNN 2019. LNCS, vol. 11555, pp. 540–547. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22808-8_53

    Chapter  Google Scholar 

  31. Qureshi, M.N.I., Oh, J., Lee, B.: 3D-CNN based discrimination of schizophrenia using resting-state fMRI. Artif. Intell. Med. 98, 10–17 (2019)

    Article  Google Scholar 

  32. Sarraf, S., Tofighi, G.: DeepAD: Alzheimer’s disease classification via deep convolutional neural networks using MRI and fMRI. bioRxiv (2016)

    Google Scholar 

  33. Sarraf, S., Tofighi, G.: Classification of Alzheimer’s disease using fMRI data and deep learning CNNs. CoRR abs/1603.08631 (2016)

    Google Scholar 

  34. Shatte, A., Hutchinson, D., Teague, S.: Machine learning in mental health: a scoping review of methods and applications. Psychol. Med. 49, 1–23 (2019)

    Article  Google Scholar 

  35. Shinde, S., et al.: Predictive markers for Parkinson’s disease using deep neural nets on neuromelanin sensitive MRI. NeuroImage: Clin. 22, 101748 (2019)

    Article  Google Scholar 

  36. Sivaranjini, S., Sujatha, C.M.: Deep learning based diagnosis of Parkinson’s disease using convolutional neural network. Multimed. Tools Appl. (2019)

    Google Scholar 

  37. Spasov, S., et al.: A parameter-efficient DL approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. NeuroImage 189, 276–287 (2019)

    Article  Google Scholar 

  38. Srinivasagopalan, S., et al.: A deep learning approach for diagnosing schizophrenic patients. J. Exp. Theoret. Artif. Intell. 31, 1–14 (2019)

    Article  Google Scholar 

  39. Ullah, H.M.T., et al.: Alzheimer’s disease and dementia detection from 3D brain MRI data using deep CNNs. In: Proceedings of the I2CT 2018, pp. 1–3 (2018)

    Google Scholar 

  40. Ulloa, A., et al.: Synthetic structural magnetic resonance image generator improves deep learning prediction of schizophrenia. In: Proceedings of the IEEE MLSP, pp. 1–6 (2015)

    Google Scholar 

  41. Ulloa, A., Plis, S.M., Calhoun, V.D.: Improving classification rate of schizophrenia using a multimodal multi-layer perceptron model with structural and functional MR. CoRR abs/1804.04591 (2018)

    Google Scholar 

  42. Yan, W., et al.: Discriminating schizophrenia from normal controls using resting state functional network connectivity: a deep neural network and layer-wise relevance propagation method. In: Proceedings of the MLSP, pp. 1–6 (2017)

    Google Scholar 

  43. Zeng, L.L., et al.: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine 30, 74–85 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Shamim Kaiser or Mufti Mahmud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mahmud, M., Al Mamun, S. (2019). Detecting Neurodegenerative Disease from MRI: A Brief Review on a Deep Learning Perspective. In: Liang, P., Goel, V., Shan, C. (eds) Brain Informatics. BI 2019. Lecture Notes in Computer Science(), vol 11976. Springer, Cham. https://doi.org/10.1007/978-3-030-37078-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37078-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37077-0

  • Online ISBN: 978-3-030-37078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics