Nothing Special   »   [go: up one dir, main page]

Skip to main content

Support Vector Machine for Path Loss Predictions in Urban Environment

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Path Loss (PL) propagation models are important for accurate radio network design and planning. In this paper, we propose a new radio propagation model for PL predictions in urban environment using Support Vector Machine (SVM). Field measurement campaigns are conducted in urban environment to obtain mobile network and path loss information of radio signals transmitted at 900, 1800 and 2100 MHz frequencies. SVM model is trained with field measurement data to predict path loss in urban propagation environment. Performance of SVM model is evaluated using Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Standard Error Deviation (SED). Results show that SVM achieve MAE, MSE, RMSE and SED of 7.953 dB, 99.966 dB, 9.998 dB and 9.940 dB respectively. SVM model outperforms existing empirical models (Okumura-Hata, COST 231, ECC-33 and Egli) with relatively low prediction error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berezdivin, R., Breinig, R., Topp, R.: Next-generation wireless communications concepts and technologies. IEEE Commun. Mag. 40, 108–116 (2002)

    Article  Google Scholar 

  2. Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., Thomas, T.: LTE-advanced: next-generation wireless broadband technology. IEEE Wirel. Commun. 17, 10–22 (2010)

    Article  Google Scholar 

  3. Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., et al.: Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52, 122–130 (2014)

    Article  Google Scholar 

  4. Laiho, J., Wacker, A., Novosad, T. (eds.): Radio Network Planning and Optimisation for UMTS, vol. 2. Wiley, New York (2002)

    Google Scholar 

  5. Mishra, A.R. (eds.): Advanced Cellular Network Planning and Optimisation: 2G/2.5G/3G... Evolution to 4G. Wiley, New York (2007)

    Google Scholar 

  6. Mishra, A.R. (eds.): Fundamentals of Network Planning and Optimisation 2G/3G/4G: Evolution to 5G. Wiley, New York (2018)

    Google Scholar 

  7. Rappaport, T.S.: Wireless Communications: Principles and Practice, vol. 2. Prentice Hall PTR, New Jersey (1996)

    Google Scholar 

  8. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  9. Nawrocki, M., Aghvami, H., Dohler, M.: Understanding UMTS Radio Network Modelling, Planning and Automated Optimisation: Theory and Practice. Wiley, New York (2006)

    Book  Google Scholar 

  10. Oseni, O.F., Popoola, S.I., Abolade, R.O., Adegbola, O.A.: Comparative analysis of received signal strength prediction models for radio network planning of GSM 900 MHz in Ilorin, Nigeria. Int. J. Innov. Technol. Exploring Eng. 4, 45–50 (2014)

    Google Scholar 

  11. Obot, A., Simeon, O., Afolayan, J.: Comparative analysis of path loss prediction models for urban macrocellular environments. Niger. J. Technol. 30, 50–59 (2011)

    Google Scholar 

  12. Popoola, S.I., Atayero, A.A., Popoola, O.A.: Comparative assessment of data obtained using empirical models for path loss predictions in a university campus environment. Data Brief 18, 380–393 (2018)

    Article  Google Scholar 

  13. Faruk, N., Ayeni, A., Adediran, Y.: Characterization of propagation path loss at VHF/UHF bands for Ilorin city, Nigeria. Niger. J. Technol. 32, 253–265 (2013)

    Google Scholar 

  14. Salman, M.A., Popoola, S.I., Faruk, N., Surajudeen-Bakinde, N., Oloyede, A.A., Olawoyin, L.A.: Adaptive neuro-fuzzy model for path loss prediction in the VHF band. In: International Conference on Computing Networking and Informatics (ICCNI) 2017, pp. 1–6 (2017)

    Google Scholar 

  15. Al Salameh, M.S., Al-Zu’bi, M.M.: Prediction of radiowave propagation for wireless cellular networks in Jordan. In: 2015 7th International Conference on Knowledge and Smart Technology (KST), pp. 149–154 (2015)

    Google Scholar 

  16. Faruk, N., Ayeni, A., Adediran, Y.A.: On the study of empirical path loss models for accurate prediction of TV signal for secondary users. Prog. Electromagn. Res. 49, 155–176 (2013)

    Article  Google Scholar 

  17. Ibhaze, A.E., Ajose, S.O., Atayero, A.A.-A., Idachaba, F.E.: Developing smart cities through optimal wireless mobile network. In: IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech) 2016, pp. 118–123 (2016)

    Google Scholar 

  18. Nimavat, V.D., Kulkarni, G.: Simulation and performance evaluation of GSM propagation channel under the urban, suburban and rural environments. In: 2012 International Conference on Communication, Information & Computing Technology (ICCICT), pp. 1–5 (2012)

    Google Scholar 

  19. Rath, H.K., Verma, S., Simha, A., Karandikar, A.: Path loss model for Indian terrain-empirical approach. In: Twenty Second National Conference on Communication (NCC) 2016, pp. 1–6 (2016)

    Google Scholar 

  20. Oseni, O.F., Popoola, S.I., Enumah, H., Gordian, A.: Radio frequency optimization of mobile networks in Abeokuta, Nigeria for improved quality of service. Int. J. Res. Eng. Technol. 3, 174–180 (2014)

    Google Scholar 

  21. Mitra, A., Reddy, B.: Handbook on Radio propagation for tropical and subtropical countries (1987)

    Google Scholar 

  22. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3, 95–99 (1988)

    Article  Google Scholar 

  23. Benmus, T.A., Abboud, R., Shatter, M.K.: Neural network approach to model the propagation path loss for great Tripoli area at 900, 1800, and 2100 MHz bands. In: 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 793–798 ((2015)

    Google Scholar 

  24. Ostlin, E., Zepernick, H.-J., Suzuki, H.: Macrocell path-loss prediction using artificial neural networks. IEEE Trans. Veh. Technol. 59, 2735–2747 (2010)

    Article  Google Scholar 

  25. DalkiliÇ, T.E., Hanci, B.Y., Apaydin, A.: Fuzzy adaptive neural network approach to path loss prediction in urban areas at GSM-900 band. Turkish J. Electri. Eng. Comput. Sci. 18, 1077–1094 (2010)

    Google Scholar 

  26. Ayadi, M., Zineb, A.B., Tabbane, S.: A UHF path loss model using learning machine for heterogeneous networks. IEEE Trans. Antennas Propag. 65, 3675–3683 (2017)

    Article  MathSciNet  Google Scholar 

  27. Stitson, M., Gammerman, A., Vapnik, V., Vovk, V., Watkins, C., Weston, J.: Support vector regression with ANOVA decomposition kernels. In: Soentpiet, R., (ed.) Advances in Kernel Methods–Support Vector Learning, pp. 285–292 (1999)

    Google Scholar 

  28. Müller, K.-R., Smola, A.J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.: Predicting time series with support vector machines. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 999–1004. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0020283

    Chapter  Google Scholar 

  29. Faruk, N., Popoola, S.I., Surajudeen-Bakinde, N.T., Oloyede, A.A., Abdulkarim, A., Olawoyin, L.A., et al.: Path loss predictions in the VHF and UHF bands within urban environments: experimental investigation of empirical, heuristics and geospatial models. IEEE Access 7, 77293–77307 (2019)

    Article  Google Scholar 

  30. Popoola, S.I., Jefia, A., Atayero, A.A., Kingsley, O., Faruk, N., Oseni, O.F., et al.: Determination of neural network parameters for path loss prediction in very high frequency wireless channel. IEEE Access 7, 150462–150483 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work was carried out under the IoT-Enabled Smart and Connected Communities (SmartCU) research cluster of the Department of Electrical and Information Engineering, Covenant University, Ota, Nigeria. The research was fully sponsored by Covenant University Centre for Research, Innovation and Development (CUCRID), Covenant University, Ota, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Segun I. Popoola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abolade, R.O., Famakinde, S.O., Popoola, S.I., Oseni, O.F., Atayero, A.A., Misra, S. (2020). Support Vector Machine for Path Loss Predictions in Urban Environment. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12255. Springer, Cham. https://doi.org/10.1007/978-3-030-58820-5_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58820-5_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58819-9

  • Online ISBN: 978-3-030-58820-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics