Abstract
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.
Preview
Unable to display preview. Download preview PDF.
References
M. Aizerman, E. Braverman, L. Rozonoér (1964), Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821–837.
C.M. Bishop (1995), Neural networks for pattern recognition, Oxford U. Press.
B. E. Boser, I M. Guyon, and V. N. Vapnik. (1992), A training algorithm for optimal margin classifiers. In D. Haussler, editor, Proc. of COLT'92, 144.
C. Burges, B. Schölkopf. (1997), Improving speed and accuracy of Support Vector Machines, NIPS'96.
H. Drucker, C. Burges, L. Kaufman, A. Smola, V. Vapnik (1997), Linear support vector regression machines, NIPS'96.
P. J. Huber (1972), Robust statistics: a review. Ann. Statist., 43:1041.
M. C. Mackey and L. Glass (1977), Science, 197:287–289.
J. Moody and C. Darken (1989), Neural Computation, 1(2):281–294.
K. Pawelzik, J. Kohlmorgen, K.-R. Müller (1996), Neural Comp., 8(2):342–358.
K. Pawelzik, K.-R. Müller, J. Kohlmorgen (1996), Prediction of Mixtures, in ICANN '96, LNCS 1112, Springer Berlin, 127–132 and GMD Tech.Rep. 1069.
B. Schölkopf, C. Burges, V. Vapnik (1995), Extracting support data for a given task. KDD'95 (eds. U. Fayyad, R. Uthurusamy), AAAI Press, Menlo Park, CA.
A. J. Smola, B. Sch6lkopf (1997) On a kernel-based method for pattern recognition, regression, approximation and operator inversion. Algorithmica to appear.
A.S. Weigend, N.A. Gershenfeld (Eds.) (1994), Time Series Prediction: Forecasting the Future and Understanding the Past, Addison-Wesley.
V. Vapnik (1995), The Nature of Statistical Learning Theory. Springer NY.
V. Vapnik, S. Golowich, A. Smola (1997), Support vector method for function approximation, regression estimation, and signal processing, NIPS'96.
X. Zhang, J. Hutchinson (1994). Simple architectures on fast machines: practical issues in nonlinear time series prediction in [13].
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Müller, K.R., Smola, A.J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V. (1997). Predicting time series with support vector machines. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020283
Download citation
DOI: https://doi.org/10.1007/BFb0020283
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive