Abstract
We present a deep learning approach to reconstruct scene appearance from unstructured images captured under collocated point lighting. At the heart of Deep Reflectance Volumes is a novel volumetric scene representation consisting of opacity, surface normal and reflectance voxel grids. We present a novel physically-based differentiable volume ray marching framework to render these scene volumes under arbitrary viewpoint and lighting. This allows us to optimize the scene volumes to minimize the error between their rendered images and the captured images. Our method is able to reconstruct real scenes with challenging non-Lambertian reflectance and complex geometry with occlusions and shadowing. Moreover, it accurately generalizes to novel viewpoints and lighting, including non-collocated lighting, rendering photorealistic images that are significantly better than state-of-the-art mesh-based methods. We also show that our learned reflectance volumes are editable, allowing for modifying the materials of the captured scenes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: ICML, pp. 40–49 (2018)
Aittala, M., Aila, T., Lehtinen, J.: Reflectance modeling by neural texture synthesis. ACM Trans. Graph. 35(4), 65:1–65:13 (2016)
Aittala, M., Weyrich, T., Lehtinen, J.: Two-shot SVBRDF capture for stationary materials. ACM Trans. Graph. 34(4), 110:1–110:13 (2015)
Alldrin, N., Zickler, T., Kriegman, D.: Photometric stereo with non-parametric and spatially-varying reflectance. In: CVPR, pp. 1–8. IEEE (2008)
Baek, S.H., Jeon, D.S., Tong, X., Kim, M.H.: Simultaneous acquisition of polarimetric SVBRDF and normals. ACM Trans. Graph. 37(6), 268-1 (2018)
Bi, S., Kalantari, N.K., Ramamoorthi, R.: Patch-based optimization for image-based texture mapping. ACM Trans. Graph. 36(4), 106-1 (2017)
Bi, S., Xu, Z., Sunkavalli, K., Kriegman, D., Ramamoorthi, R.: Deep 3D capture: geometry and reflectance from sparse multi-view images. In: CVPR, pp. 5960–5969 (2020)
Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured lumigraph rendering. In: SIGGRAPH, pp. 425–432. ACM (2001)
Chen, Z., Chen, A., Zhang, G., Wang, C., Ji, Y., Kutulakos, K.N., Yu, J.: A neural rendering framework for free-viewpoint relighting. In: CVPR, June 2020
Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. arXiv preprint arXiv:1812.02822 (2018)
Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 145–156. ACM Press/Addison-Wesley Publishing Co. (2000)
Foo, S.C.: A gonioreflectometer for measuring the bidirectional reflectance of material for use in illumination computation. Ph.D. thesis, Citeseer (1997)
Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2009)
Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and spatially-varying BRDFs from photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1060–1071 (2009)
Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3D surface generation. In: CVPR, pp. 216–224 (2018)
Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B.: DeepMVS: learning multi-view stereopsis. In: CVPR, pp. 2821–2830 (2018)
Hui, Z., Sunkavalli, K., Lee, J.Y., Hadap, S., Wang, J., Sankaranarayanan, A.C.: Reflectance capture using univariate sampling of BRDFs. In: ICCV, pp. 5362–5370 (2017)
Ji, M., Gall, J., Zheng, H., Liu, Y., Fang, L.: SurfaceNet: an end-to-end 3D neural network for multiview stereopsis. In: ICCV, pp. 2307–2315 (2017)
Kanamori, Y., Endo, Y.: Relighting humans: occlusion-aware inverse rendering for full-body human images. ACM Trans. Graph. 37(6), 1–11 (2018)
Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 386–402. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_23
Kang, K., et al.: Learning efficient illumination multiplexing for joint capture of reflectance and shape (2019)
Karis, B., Games, E.: Real shading in unreal engine 4 (2013)
Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, vol. 7 (2006)
Kniss, J., Premoze, S., Hansen, C., Shirley, P., McPherson, A.: A model for volume lighting and modeling. IEEE Trans. Vis. Comput. Graph. 9(2), 150–162 (2003)
Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. ICCV 38(3), 199–218 (2000). https://doi.org/10.1023/A:1008191222954
Ladicky, L., Saurer, O., Jeong, S., Maninchedda, F., Pollefeys, M.: From point clouds to mesh using regression. In: ICCV, pp. 3893–3902 (2017)
Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42. ACM (1996)
Li, Z., Sunkavalli, K., Chandraker, M.: Materials for masses: SVBRDF acquisition with a single mobile phone image. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 74–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_5
Li, Z., Xu, Z., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Learning to reconstruct shape and spatially-varying reflectance from a single image. In: SIGGRAPH Asia 2018, p. 269. ACM (2018)
Liao, Y., Donne, S., Geiger, A.: Deep marching cubes: learning explicit surface representations. In: CVPR, pp. 2916–2925 (2018)
Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. ACM Trans. Graph. 38(4), 65 (2019)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)
Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Trans. Graph. 22(3), 759–769 (2003)
Max, N.: Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. arXiv preprint arXiv:1812.03828 (2018)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis (2020)
Nam, G., Lee, J.H., Gutierrez, D., Kim, M.H.: Practical SVBRDF acquisition of 3D objects with unstructured flash photography. In: SIGGRAPH Asia 2018, p. 267. ACM (2018)
Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and tracking. In: Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011, pp. 127–136. IEEE Computer Society, Washington, DC, USA (2011)
Nielsen, J.B., Jensen, H.W., Ramamoorthi, R.: On optimal, minimal BRDF sampling for reflectance acquisition. ACM Trans. Graph. 34(6), 1–11 (2015)
Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: CVPR, pp. 3504–3515 (2020)
Novák, J., Georgiev, I., Hanika, J., Jarosz, W.: Monte Carlo methods for volumetric light transport simulation. In: Computer Graphics Forum, vol. 37, pp. 551–576. Wiley Online Library (2018)
Paschalidou, D., Ulusoy, O., Schmitt, C., Van Gool, L., Geiger, A.: RayNet: learning volumetric 3D reconstruction with ray potentials. In: CVPR, pp. 3897–3906 (2018)
Peers, P., et al.: Compressive light transport sensing. ACM Trans. Graph. 28(1), 3 (2009)
Philip, J., Gharbi, M., Zhou, T., Efros, A.A., Drettakis, G.: Multi-view relighting using a geometry-aware network. ACM Trans. Graph. 38(4), 1–14 (2019)
Richter, S.R., Roth, S.: Matryoshka networks: predicting 3D geometry via nested shape layers. In: CVPR, pp. 1936–1944 (2018)
Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31
Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: DeepVoxels: learning persistent 3D feature embeddings. In: CVPR, pp. 2437–2446 (2019)
Srinivasan, P.P., Tucker, R., Barron, J.T., Ramamoorthi, R., Ng, R., Snavely, N.: Pushing the boundaries of view extrapolation with multiplane images. In: CVPR, pp. 175–184 (2019)
Sun, T., et al.: Single image portrait relighting. ACM Trans. Graph. (Proceedings SIGGRAPH) (2019)
Wang, J., Sun, B., Lu, Y.: MVPNet: multi-view point regression networks for 3D object reconstruction from a single image. arXiv preprint arXiv:1811.09410 (2018)
Wittenbrink, C.M., Malzbender, T., Goss, M.E.: Opacity-weighted color interpolation, for volume sampling. In: Proceedings of the 1998 IEEE Symposium on Volume Visualization, pp. 135–142 (1998)
Wu, H., Wang, Z., Zhou, K.: Simultaneous localization and appearance estimation with a consumer RGB-D camera. IEEE Trans. Vis. Comput. Graph. 22(8), 2012–2023 (2015)
Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: CVPR, pp. 1912–1920 (2015)
Xia, R., Dong, Y., Peers, P., Tong, X.: Recovering shape and spatially-varying surface reflectance under unknown illumination. ACM Trans. Graph. 35(6), 187 (2016)
Xu, Z., Bi, S., Sunkavalli, K., Hadap, S., Su, H., Ramamoorthi, R.: Deep view synthesis from sparse photometric images. ACM Trans. Graph. 38(4), 76 (2019)
Xu, Z., Nielsen, J.B., Yu, J., Jensen, H.W., Ramamoorthi, R.: Minimal BRDF sampling for two-shot near-field reflectance acquisition. ACM Trans. Graph. 35(6), 188 (2016)
Xu, Z., Sunkavalli, K., Hadap, S., Ramamoorthi, R.: Deep image-based relighting from optimal sparse samples. ACM Trans. Graph. 37(4), 126 (2018)
Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 785–801. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_47
Zhou, H., Hadap, S., Sunkavalli, K., Jacobs, D.W.: Deep single-image portrait relighting. In: ICCV, pp. 7194–7202 (2019)
Zhou, Q.Y., Koltun, V.: Color map optimization for 3D reconstruction with consumer depth cameras. ACM Trans. Graph. 33(4), 155 (2014)
Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images. ACM Trans. Graph. 37(4), 1–12 (2018)
Zhou, Z., et al.: Sparse-as-possible SVBRDF acquisition. ACM Trans. Graph. 35(6), 189 (2016)
Acknowledgements
We thank Giljoo Nam for help with the comparisons. This work was supported in part by ONR grants N000141712687, N000141912293, N000142012529, NSF grant 1617234, Adobe, the Ronald L. Graham Chair and the UC San Diego Center for Visual Computing.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 67788 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bi, S. et al. (2020). Deep Reflectance Volumes: Relightable Reconstructions from Multi-view Photometric Images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12348. Springer, Cham. https://doi.org/10.1007/978-3-030-58580-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-58580-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58579-2
Online ISBN: 978-3-030-58580-8
eBook Packages: Computer ScienceComputer Science (R0)