Abstract
Typical inverse rendering methods focus on learning implicit neural scene representations by modeling the geometry, materials and illumination separately, which entails significant computations for optimization. In this work we design a Unified Voxelization framework for explicit learning of scene representations, dubbed UniVoxel, which allows for efficient modeling of the geometry, materials and illumination jointly, thereby accelerating the inverse rendering significantly. To be specific, we propose to encode a scene into a latent volumetric representation, based on which the geometry, materials and illumination can be readily learned via lightweight neural networks in a unified manner. Particularly, an essential design of UniVoxel is that we leverage local Spherical Gaussians to represent the incident light radiance, which enables the seamless integration of modeling illumination into the unified voxelization framework. Such novel design enables our UniVoxel to model the joint effects of direct lighting, indirect lighting and light visibility efficiently without expensive multi-bounce ray tracing. Extensive experiments on multiple benchmarks covering diverse scenes demonstrate that UniVoxel boosts the optimization efficiency significantly compared to other methods, reducing the per-scene training time from hours to 18 min, while achieving favorable reconstruction quality. Code is available at https://github.com/freemantom/UniVoxel.
S. Wu and S. Tang—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bi, S., et al.: Neural reflectance fields for appearance acquisition. arXiv preprint arXiv:2008.03824 (2020)
Bi, S., Xu, Z., Sunkavalli, K., Kriegman, D., Ramamoorthi, R.: Deep 3D capture: geometry and reflectance from sparse multi-view images. In: CVPR (2020)
Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.: NeRD: neural reflectance decomposition from image collections. In: ICCV (2021)
Burley, B., Studios, W.D.A.: Physically-based shading at Disney. In: SIGGRAPH (2012)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20
Chen, W., et al.: Learning to predict 3D objects with an interpolation-based differentiable renderer. In: NeurIPS (2019)
Chen, W., et al.: DIB-R++: learning to predict lighting and material with a hybrid differentiable renderer. In: NeurIPS (2021)
Chen, Z., et al.: L-tracing: fast light visibility estimation on neural surfaces by sphere tracing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13675, pp. 217–233. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19784-0_13
Fang, J., et al.: Fast dynamic radiance fields with time-aware neural voxels. In: SIGGRAPH Asia (2022)
Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: CVPR (2022)
Gao, J., et al.: Relightable 3D gaussian: real-time point cloud relighting with BRDF decomposition and ray tracing. arXiv preprint arXiv:2311.16043 (2023)
Garon, M., Sunkavalli, K., Hadap, S., Carr, N., Lalonde, J.F.: Fast spatially-varying indoor lighting estimation. In: CVPR (2019)
Hasselgren, J., Hofmann, N., Munkberg, J.: Shape, light, and material decomposition from images using Monte Carlo rendering and denoising. In: Advances in Neural Information Processing Systems (2022)
Jin, H., et al.: TensoIR: tensorial inverse rendering. arXiv preprint arXiv:2304.12461 (2023)
Kajiya, J.T.: The rendering equation. In: SIGGRAPH (1986)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. (TOG) (2023)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Inverse rendering for complex indoor scenes: shape, spatially-varying lighting and SVBRDF from a single image. In: CVPR (2020)
Liang, Z., Zhang, Q., Feng, Y., Shan, Y., Jia, K.: GS-IR: 3D gaussian splatting for inverse rendering. arXiv preprint arXiv:2311.16473 (2023)
Liu, J.W., et al.: DeVRF: fast deformable voxel radiance fields for dynamic scenes. arXiv preprint arXiv:2205.15723 (2022)
Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3D reasoning. In: ICCV (2019)
Mai, A., Verbin, D., Kuester, F., Fridovich-Keil, S.: Neural microfacet fields for inverse rendering. In: ICCV (2023)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (TOG) 41(4), 1–15 (2022)
Munkberg, J., et al.: Extracting triangular 3D models, materials, and lighting from images. In: CVPR (2022)
Nam, G., Lee, J.H., Gutierrez, D., Kim, M.H.: Practical SVBRDF acquisition of 3D objects with unstructured flash photography. ACM Trans. Graph. (TOG) 37(6), 1–12 (2018)
Rudnev, V., Elgharib, M., Smith, W., Liu, L., Golyanik, V., Theobalt, C.: NeRF for outdoor scene relighting. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13676, pp. 615–631. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19787-1_35
Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.: NeRV: neural reflectance and visibility fields for relighting and view synthesis. In: CVPR (2021)
Sun, C., et al.: Neural-PBIR reconstruction of shape, material, and illumination. In: ICCV (2023)
Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: CVPR (2022)
Tsai, Y.T., Shih, Z.C.: All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Trans. Graph. (TOG) 25, 967–976 (2006)
Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF: structured view-dependent appearance for neural radiance fields. In: CVPR (2022)
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. In: NeurIPS (2021)
Wang, Z., et al.: Neural fields meet explicit geometric representations for inverse rendering of urban scenes. In: CVPR (2023)
Wu, H., Hu, Z., Li, L., Zhang, Y., Fan, C., Yu, X.: NeFII: inverse rendering for reflectance decomposition with near-field indirect illumination. In: CVPR (2023)
Wu, T., et al.: Voxurf: voxel-based efficient and accurate neural surface reconstruction. arXiv preprint arXiv:2208.12697 (2022)
Xia, R., Dong, Y., Peers, P., Tong, X.: Recovering shape and spatially-varying surface reflectance under unknown illumination. ACM Trans. Graph. (TOG) 35(6), 1–12 (2016)
Yang, W., Chen, G., Chen, C., Chen, Z., Wong, K.Y.K.: PS-NeRF: neural inverse rendering for multi-view photometric stereo. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13661, pp. 266–284. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19769-7_16
Yao, Y., et al.: NeILF: neural incident light field for physically-based material estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13691, pp. 700–716. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_40
Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. In: NeurIPS (2020)
Zhang, J., et al.: NeILF++: inter-reflectable light fields for geometry and material estimation. arXiv preprint arXiv:2303.17147 (2023)
Zhang, K., Luan, F., Wang, Q., Bala, K., Snavely, N.: PhySG: inverse rendering with spherical gaussians for physics-based material editing and relighting. In: CVPR (2021)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron, J.T.: NeRFactor: neural factorization of shape and reflectance under an unknown illumination. ACM Trans. Graph. (TOG) 40(6), 1–18 (2021)
Zhang, Y., et al.: NeMF: inverse volume rendering with neural microflake field. In: ICCV (2023)
Zhang, Y., Sun, J., He, X., Fu, H., Jia, R., Zhou, X.: Modeling indirect illumination for inverse rendering. In: CVPR (2022)
Acknowledgements
This work was supported in part by the National Natural Science Foundation of China (U2013210, 62372133), in part by Shenzhen Fundamental Research Program (Grant NO. JCYJ20220818102415032), in part by Guangdong Basic and Applied Basic Research Foundation (2024A1515011706), in part by the Shenzhen Key Technical Project (NO. JSGG20220831092805009, JSGG20201103153802006, KJZD20230923115117033).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, S., Tang, S., Lu, G., Liu, J., Pei, W. (2025). UniVoxel: Fast Inverse Rendering by Unified Voxelization of Scene Representation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15129. Springer, Cham. https://doi.org/10.1007/978-3-031-73209-6_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-73209-6_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73208-9
Online ISBN: 978-3-031-73209-6
eBook Packages: Computer ScienceComputer Science (R0)