Nothing Special   »   [go: up one dir, main page]

Skip to main content

UniVoxel: Fast Inverse Rendering by Unified Voxelization of Scene Representation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15129))

Included in the following conference series:

  • 22 Accesses

Abstract

Typical inverse rendering methods focus on learning implicit neural scene representations by modeling the geometry, materials and illumination separately, which entails significant computations for optimization. In this work we design a Unified Voxelization framework for explicit learning of scene representations, dubbed UniVoxel, which allows for efficient modeling of the geometry, materials and illumination jointly, thereby accelerating the inverse rendering significantly. To be specific, we propose to encode a scene into a latent volumetric representation, based on which the geometry, materials and illumination can be readily learned via lightweight neural networks in a unified manner. Particularly, an essential design of UniVoxel is that we leverage local Spherical Gaussians to represent the incident light radiance, which enables the seamless integration of modeling illumination into the unified voxelization framework. Such novel design enables our UniVoxel to model the joint effects of direct lighting, indirect lighting and light visibility efficiently without expensive multi-bounce ray tracing. Extensive experiments on multiple benchmarks covering diverse scenes demonstrate that UniVoxel boosts the optimization efficiency significantly compared to other methods, reducing the per-scene training time from hours to 18 min, while achieving favorable reconstruction quality. Code is available at https://github.com/freemantom/UniVoxel.

S. Wu and S. Tang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bi, S., et al.: Neural reflectance fields for appearance acquisition. arXiv preprint arXiv:2008.03824 (2020)

  2. Bi, S., Xu, Z., Sunkavalli, K., Kriegman, D., Ramamoorthi, R.: Deep 3D capture: geometry and reflectance from sparse multi-view images. In: CVPR (2020)

    Google Scholar 

  3. Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.: NeRD: neural reflectance decomposition from image collections. In: ICCV (2021)

    Google Scholar 

  4. Burley, B., Studios, W.D.A.: Physically-based shading at Disney. In: SIGGRAPH (2012)

    Google Scholar 

  5. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20

    Chapter  Google Scholar 

  6. Chen, W., et al.: Learning to predict 3D objects with an interpolation-based differentiable renderer. In: NeurIPS (2019)

    Google Scholar 

  7. Chen, W., et al.: DIB-R++: learning to predict lighting and material with a hybrid differentiable renderer. In: NeurIPS (2021)

    Google Scholar 

  8. Chen, Z., et al.: L-tracing: fast light visibility estimation on neural surfaces by sphere tracing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13675, pp. 217–233. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19784-0_13

    Chapter  Google Scholar 

  9. Fang, J., et al.: Fast dynamic radiance fields with time-aware neural voxels. In: SIGGRAPH Asia (2022)

    Google Scholar 

  10. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: CVPR (2022)

    Google Scholar 

  11. Gao, J., et al.: Relightable 3D gaussian: real-time point cloud relighting with BRDF decomposition and ray tracing. arXiv preprint arXiv:2311.16043 (2023)

  12. Garon, M., Sunkavalli, K., Hadap, S., Carr, N., Lalonde, J.F.: Fast spatially-varying indoor lighting estimation. In: CVPR (2019)

    Google Scholar 

  13. Hasselgren, J., Hofmann, N., Munkberg, J.: Shape, light, and material decomposition from images using Monte Carlo rendering and denoising. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  14. Jin, H., et al.: TensoIR: tensorial inverse rendering. arXiv preprint arXiv:2304.12461 (2023)

  15. Kajiya, J.T.: The rendering equation. In: SIGGRAPH (1986)

    Google Scholar 

  16. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. (TOG) (2023)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Inverse rendering for complex indoor scenes: shape, spatially-varying lighting and SVBRDF from a single image. In: CVPR (2020)

    Google Scholar 

  19. Liang, Z., Zhang, Q., Feng, Y., Shan, Y., Jia, K.: GS-IR: 3D gaussian splatting for inverse rendering. arXiv preprint arXiv:2311.16473 (2023)

  20. Liu, J.W., et al.: DeVRF: fast deformable voxel radiance fields for dynamic scenes. arXiv preprint arXiv:2205.15723 (2022)

  21. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3D reasoning. In: ICCV (2019)

    Google Scholar 

  22. Mai, A., Verbin, D., Kuester, F., Fridovich-Keil, S.: Neural microfacet fields for inverse rendering. In: ICCV (2023)

    Google Scholar 

  23. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  24. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (TOG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  25. Munkberg, J., et al.: Extracting triangular 3D models, materials, and lighting from images. In: CVPR (2022)

    Google Scholar 

  26. Nam, G., Lee, J.H., Gutierrez, D., Kim, M.H.: Practical SVBRDF acquisition of 3D objects with unstructured flash photography. ACM Trans. Graph. (TOG) 37(6), 1–12 (2018)

    Article  Google Scholar 

  27. Rudnev, V., Elgharib, M., Smith, W., Liu, L., Golyanik, V., Theobalt, C.: NeRF for outdoor scene relighting. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13676, pp. 615–631. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19787-1_35

    Chapter  Google Scholar 

  28. Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.: NeRV: neural reflectance and visibility fields for relighting and view synthesis. In: CVPR (2021)

    Google Scholar 

  29. Sun, C., et al.: Neural-PBIR reconstruction of shape, material, and illumination. In: ICCV (2023)

    Google Scholar 

  30. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: CVPR (2022)

    Google Scholar 

  31. Tsai, Y.T., Shih, Z.C.: All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Trans. Graph. (TOG) 25, 967–976 (2006)

    Article  Google Scholar 

  32. Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF: structured view-dependent appearance for neural radiance fields. In: CVPR (2022)

    Google Scholar 

  33. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. In: NeurIPS (2021)

    Google Scholar 

  34. Wang, Z., et al.: Neural fields meet explicit geometric representations for inverse rendering of urban scenes. In: CVPR (2023)

    Google Scholar 

  35. Wu, H., Hu, Z., Li, L., Zhang, Y., Fan, C., Yu, X.: NeFII: inverse rendering for reflectance decomposition with near-field indirect illumination. In: CVPR (2023)

    Google Scholar 

  36. Wu, T., et al.: Voxurf: voxel-based efficient and accurate neural surface reconstruction. arXiv preprint arXiv:2208.12697 (2022)

  37. Xia, R., Dong, Y., Peers, P., Tong, X.: Recovering shape and spatially-varying surface reflectance under unknown illumination. ACM Trans. Graph. (TOG) 35(6), 1–12 (2016)

    Article  Google Scholar 

  38. Yang, W., Chen, G., Chen, C., Chen, Z., Wong, K.Y.K.: PS-NeRF: neural inverse rendering for multi-view photometric stereo. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13661, pp. 266–284. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19769-7_16

    Chapter  Google Scholar 

  39. Yao, Y., et al.: NeILF: neural incident light field for physically-based material estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13691, pp. 700–716. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_40

    Chapter  Google Scholar 

  40. Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. In: NeurIPS (2020)

    Google Scholar 

  41. Zhang, J., et al.: NeILF++: inter-reflectable light fields for geometry and material estimation. arXiv preprint arXiv:2303.17147 (2023)

  42. Zhang, K., Luan, F., Wang, Q., Bala, K., Snavely, N.: PhySG: inverse rendering with spherical gaussians for physics-based material editing and relighting. In: CVPR (2021)

    Google Scholar 

  43. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  44. Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron, J.T.: NeRFactor: neural factorization of shape and reflectance under an unknown illumination. ACM Trans. Graph. (TOG) 40(6), 1–18 (2021)

    Article  Google Scholar 

  45. Zhang, Y., et al.: NeMF: inverse volume rendering with neural microflake field. In: ICCV (2023)

    Google Scholar 

  46. Zhang, Y., Sun, J., He, X., Fu, H., Jia, R., Zhou, X.: Modeling indirect illumination for inverse rendering. In: CVPR (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (U2013210, 62372133), in part by Shenzhen Fundamental Research Program (Grant NO. JCYJ20220818102415032), in part by Guangdong Basic and Applied Basic Research Foundation (2024A1515011706), in part by the Shenzhen Key Technical Project (NO. JSGG20220831092805009, JSGG20201103153802006, KJZD20230923115117033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Pei .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9973 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, S., Tang, S., Lu, G., Liu, J., Pei, W. (2025). UniVoxel: Fast Inverse Rendering by Unified Voxelization of Scene Representation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15129. Springer, Cham. https://doi.org/10.1007/978-3-031-73209-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73209-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73208-9

  • Online ISBN: 978-3-031-73209-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics