Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learnable Cost Volume Using the Cayley Representation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Cost volume is an essential component of recent deep models for optical flow estimation and is usually constructed by calculating the inner product between two feature vectors. However, the standard inner product in the commonly-used cost volume may limit the representation capacity of flow models because it neglects the correlation among different channel dimensions and weighs each dimension equally. To address this issue, we propose a learnable cost volume (LCV) using an elliptical inner product, which generalizes the standard inner product by a positive definite kernel matrix. To guarantee its positive definiteness, we perform spectral decomposition on the kernel matrix and re-parameterize it via the Cayley representation. The proposed LCV is a lightweight module and can be easily plugged into existing models to replace the vanilla cost volume. Experimental results show that the LCV module not only improves the accuracy of state-of-the-art models on standard benchmarks, but also promotes their robustness against illumination change, noises, and adversarial perturbations of the input signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  2. Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video frame interpolation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  3. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Recogn. Mach. Intell. (PAMI) 33(3), 500–513 (2010)

    Article  Google Scholar 

  4. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  5. Cayley, A.: About the algebraic structure of the orthogonal group and the other classical groups in a field of characteristic zero or a prime characteristic. Reine Angewandte Mathematik 32, 1846 (1846)

    Google Scholar 

  6. Cheng, J., Tsai, Y.H., Wang, S., Yang, M.H.: Segflow: joint learning for video object segmentation and optical flow. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  7. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  8. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  9. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  10. Hafner, D., Demetz, O., Weickert, J.: Why is the census transform good for robust optic flow computation? In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 210–221. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38267-3_18

    Chapter  Google Scholar 

  11. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  Google Scholar 

  12. Hui, T.W., Tang, X., Change Loy, C.: Liteflownet: a lightweight convolutional neural network for optical flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  13. Hur, J., Roth, S.: Mirrorflow: exploiting symmetries in joint optical flow and occlusion estimation. IEEE International Conference on Computer Vision (ICCV), pp. 312–321 (2017)

    Google Scholar 

  14. Hur, J., Roth, S.: Iterative residual refinement for joint optical flow and occlusion estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  15. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  16. Janai, J., Güney, F., Ranjan, A., Black, M.J., Geiger, A.: Unsupervised learning of multi-frame optical flow with occlusions. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  17. Yu, J.J., Harley, A.W., Derpanis, K.G.: Back to basics: unsupervised learning of optical flow via brightness constancy and motion smoothness. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 3–10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_1

    Chapter  Google Scholar 

  18. Jolliffe, I.T.: Principal components in regression analysis. In: Principal Component Analysis, pp. 129–155. Springer, New York (1986). https://doi.org/10.1007/978-1-4757-1904-8_8

  19. Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  20. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer via feature transforms. In: Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  21. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Flow-grounded spatial-temporal video prediction from still images. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  22. Lin, J., Gan, C., Han, S.: Tsm: temporal shift module for efficient video understanding. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  23. Liu, P., King, I., Lyu, M.R., Xu, J.: Ddflow: learning optical flow with unlabeled data distillation. In: Association for the Advancement of Artificial Intelligence (AAAI) (2019)

    Google Scholar 

  24. Liu, P., Lyu, M.R., King, I., Xu, J.: Selflow: self-supervised learning of optical flow. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  25. Meister, S., Hur, J., Roth, S.: Unflow: unsupervised learning of optical flow with a bidirectional census loss. In: Association for the Advancement of Artificial Intelligence (AAAI) (2017)

    Google Scholar 

  26. Menze, M., Heipke, C., Geiger, A.: Joint 3d estimation of vehicles and scene flow. In: ISPRS Workshop on Image Sequence Analysis (ISA) (2015)

    Google Scholar 

  27. Menze, M., Heipke, C., Geiger, A.: Object scene flow. ISPRS J. Photogrammetry Remote Sensing (JPRS) 140, 60–76 (2018)

    Article  Google Scholar 

  28. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  29. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  30. Ranjan, A., Janai, J., Geiger, A., Black, M.J.: Attacking optical flow. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  31. Ren, Z., Yan, J., Ni, B., Liu, B., Yang, X., Zha, H.: Unsupervised deep learning for optical flow estimation. In: Association for the Advancement of Artificial Intelligence (AAAI) (2017)

    Google Scholar 

  32. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. (IJCV) 47(1–3), 7–42 (2002). https://doi.org/10.1023/A:1014573219977

    Article  MATH  Google Scholar 

  33. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: CNNs for optical flow using pyramid, warping, and cost volume. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  34. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Models matter, so does training: an empirical study of CNNs for optical flow estimation. IEEE Trans. Pattern Recogn. Mach. Intell. (PAMI) 42, 1408–1423 (2019)

    Article  Google Scholar 

  35. Teed, Z., Deng, J.: Raft: recurrent all-pairs field transforms for optical flow. arXiv preprint arXiv:2003.12039 (2020)

  36. Tsai, Y.H., Yang, M.H., Black, M.J.: Video segmentation via object flow. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  37. Wang, Y., Yang, Y., Yang, Z., Zhao, L., Xu, W.: Occlusion aware unsupervised learning of optical flow. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  38. Xu, J., Ranftl, R., Koltun, V.: Accurate optical flow via direct cost volume processing. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  39. Yang, G., Ramanan, D.: Volumetric correspondence networks for optical flow. In: Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  40. Yin, Z., Darrell, T., Yu, F.: Hierarchical discrete distribution decomposition for match density estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  41. Yin, Z., Shi, J.: Geonet: unsupervised learning of dense depth, optical flow and camera pose. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  42. Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res. (JMLR) 17, 2287–2318 (2016)

    MATH  Google Scholar 

  43. Zou, Y., Luo, Z., Huang, J.B.: Df-net: unsupervised joint learning of depth and flow using cross-task consistency. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by NSF CAREER Grant 1149783. We also thank Pengpeng Liu and Jingfeng Wu for kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taihong Xiao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6314 KB)

Supplementary material 2 (mp4 17192 KB)

Supplementary material 3 (mp4 33238 KB)

Supplementary material 4 (mp4 27663 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, T. et al. (2020). Learnable Cost Volume Using the Cayley Representation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58545-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58544-0

  • Online ISBN: 978-3-030-58545-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics