Nothing Special   »   [go: up one dir, main page]

Skip to main content

Non-strict Temporal Exploration

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2020)

Abstract

A temporal graph \(\mathcal {G} = \langle G_1, ..., G_L\rangle \) is a sequence of graphs \(G_i \subseteq G\), for some given underlying graph G of order n. We consider the non-strict variant of the Temporal Exploration problem, in which we are asked to decide if \(\mathcal {G}\) admits a sequence W of consecutively crossed edges \(e \in G\), such that W visits all vertices at least once and that each \(e \in W\) is crossed at a timestep \(t' \in [L]\) such that \(t' \ge t\), where t is the timestep during which the previous edge was crossed. This variant of the problem is shown to be \(\textsf {NP}\)-complete. We also consider the hardness of approximating the exploration time for yes-instances in which our order-n input graph satisfies certain assumptions that ensure exploration schedules always exist. The first is that each pair of vertices are contained in the same component at least once in every period of n steps, whilst the second is that the temporal diameter of our input graph is bounded by a constant c. For the latter of these two assumptions we show \(O(n^{\frac{1}{2}-\varepsilon })\)-inapproximability and \(O(n^{1-\varepsilon })\)-inapproximability in the \(c=2\) and \(c \ge 3\) cases, respectively. For graphs with temporal diameter \(c=2\), we also prove an \(O(\sqrt{n} \log n)\) upper bound on worst-case time required for exploration, as well as an \(\varOmega (\sqrt{n})\) lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akrida, E.C., Mertzios, G.B., Spirakis, P.G.: The temporal explorer who returns to the base. In: Heggernes, P. (ed.) CIAC 2019. LNCS, vol. 11485, pp. 13–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17402-6_2

    Chapter  Google Scholar 

  2. Bodlaender, H.L., van der Zanden, T.C.: On exploring always-connected temporal graphs of small pathwidth. Inf. Process. Lett. 142, 68–71 (2019). https://doi.org/10.1016/j.ipl.2018.10.016

    Article  MathSciNet  MATH  Google Scholar 

  3. Brodén, B., Hammar, M., Nilsson, B.J.: Online and offline algorithms for the time-dependent TSP with time zones. Algorithmica 39(4), 299–319 (2004). https://doi.org/10.1007/s00453-004-1088-z

    Article  MathSciNet  MATH  Google Scholar 

  4. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003). https://doi.org/10.1142/S0129054103001728

    Article  MathSciNet  MATH  Google Scholar 

  5. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. IJPEDS 27(5), 387–408 (2012)

    Google Scholar 

  6. Casteigts, A., Himmel, A.S., Molter, H., Zschoche, P.: The computational complexity of finding temporal paths under waiting time constraints. CoRR abs/1909.06437 (2019). https://arxiv.org/abs/1909.06437

  7. Di Luna, G.A., Dobrev, S., Flocchini, P., Santoro, N.: Live exploration of dynamic rings. In: 36th IEEE International Conference on Distributed Computing Systems (ICDCS 2016), pp. 570–579. IEEE (2016). https://doi.org/10.1109/ICDCS.2016.59

  8. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 444–455. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7_36

    Chapter  Google Scholar 

  9. Erlebach, T., Kammer, F., Luo, K., Sajenko, A., Spooner, J.T.: Two moves per time step make a difference. In: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). LIPIcs, vol. 132, pp. 141:1–141:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.141

  10. Erlebach, T., Spooner, J.T.: Faster exploration of degree-bounded temporal graphs. In: 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). LIPIcs, vol. 117, pp. 36:1–36:13. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.36

  11. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor. Comput. Sci. 469, 53–68 (2013). https://doi.org/10.1016/j.tcs.2012.10.029

    Article  MathSciNet  MATH  Google Scholar 

  12. Fluschnik, T., Molter, H., Niedermeier, R., Renken, M., Zschoche, P.: Temporal graph classes: a view through temporal separators. Theor. Comput. Sci. 806, 197–218 (2020). https://doi.org/10.1016/j.tcs.2019.03.031

    Article  MathSciNet  MATH  Google Scholar 

  13. Gotoh, T., Flocchini, P., Masuzawa, T., Santoro, N.: Tight bounds on distributed exploration of temporal graphs. In: 23rd International Conference on Principles of Distributed Systems (OPODIS 2019). LIPIcs, vol. 153, pp. 22:1–22:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.OPODIS.2019.22

  14. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 250–262. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9_20

    Chapter  Google Scholar 

  15. Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs: the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 13–23. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03578-9_2

    Chapter  Google Scholar 

  16. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002). https://doi.org/10.1006/jcss.2002.1829

    Article  MathSciNet  MATH  Google Scholar 

  17. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4), 239–280 (2016). https://doi.org/10.1080/15427951.2016.1177801

    Article  MathSciNet  Google Scholar 

  18. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Causality, influence, and computation in possibly disconnected synchronous dynamic networks. J. Parallel Distrib. Comput. 74(1), 2016–2026 (2014). https://doi.org/10.1016/j.jpdc.2013.07.007

    Article  MATH  Google Scholar 

  19. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. Theor. Comput. Sci. 634, 1–23 (2016). https://doi.org/10.1016/j.tcs.2016.04.006

    Article  MathSciNet  MATH  Google Scholar 

  20. Sobin, C.C., Raychoudhury, V., Marfia, G., Singla, A.: A survey of routing and data dissemination in delay tolerant networks. J. Netw. Comput. Appl. 67, 128–146 (2016). https://doi.org/10.1016/j.jnca.2016.01.002

    Article  Google Scholar 

  21. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discr. Appl. Math. 8(1), 85–89 (1984). https://doi.org/10.1016/0166-218X(84)90081-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob T. Spooner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erlebach, T., Spooner, J.T. (2020). Non-strict Temporal Exploration. In: Richa, A., Scheideler, C. (eds) Structural Information and Communication Complexity. SIROCCO 2020. Lecture Notes in Computer Science(), vol 12156. Springer, Cham. https://doi.org/10.1007/978-3-030-54921-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54921-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54920-6

  • Online ISBN: 978-3-030-54921-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics