Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Temporal Explorer Who Returns to the Base

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11485))

Included in the following conference series:

Abstract

In this paper we study the problem of exploring a temporal graph (i.e. a graph that changes over time), in the fundamental case where the underlying static graph is a star on n vertices. The aim of the exploration problem in a temporal star is to find a temporal walk which starts at the center of the star, visits all leaves, and eventually returns back to the center. We present here a systematic study of the computational complexity of this problem, depending on the number k of time-labels that every edge is allowed to have; that is, on the number k of time points where each edge can be present in the graph. To do so, we distinguish between the decision version \(\textsc {StarExp}(k)\), asking whether a complete exploration of the instance exists, and the maximization version \(\textsc {MaxStarExp}(k)\) of the problem, asking for an exploration schedule of the greatest possible number of edges in the star. We fully characterize \(\textsc {MaxStarExp}(k)\) and show a dichotomy in terms of its complexity: on one hand, we show that for both \(k=2\) and \(k=3\), it can be efficiently solved in \(O(n\log n)\) time; on the other hand, we show that it is APX-complete, for every \(k\ge 4\) (does not admit a PTAS, unless P = NP, but admits a polynomial-time 1.582-approximation algorithm). We also partially characterize \(\textsc {StarExp}(k)\) in terms of complexity: we show that it can be efficiently solved in \(O(n\log n)\) time for \(k \in \{2,3\}\) (as a corollary of the solution to \(\textsc {MaxStarExp}(k)\), for \(k\in \{2,3\}\)), but is NP-complete, for every \(k\ge 6\).

Partially supported by the NeST initiative of the School of EEE and CS at the University of Liverpool and by the EPSRC Grants EP/P020372/1 and EP/P02002X/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A preliminary version of this paper appeared publicly in ArXiv on 12\(^{th}\) May 2018 (https://arxiv.org/pdf/1805.04713.pdf).

  2. 2.

    Note that an undirected edge \(e=\{u,v\}\) is associated with \(2\cdot |L(e)|\) time edges, namely both (uvl) and (vul) for every \(l\in L(e)\).

  3. 3.

    APX is the complexity class of optimization problems that allow constant-factor approximation algorithms.

  4. 4.

    We consider here the order \(c_1,c_2,\ldots , c_q\) of the clauses of C; we say that \(x_i\) appears unnegated for the first time in some clause \(c_\mu \) if \(x_i \not \in c_m,~m<\mu \).

References

  1. Aaron, E., Krizanc, D., Meyerson, E.: DMVP: foremost waypoint coverage of time-varying graphs. In: International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp. 29–41 (2014)

    Google Scholar 

  2. Akrida, E.C., Gasieniec, L., Mertzios, G.B., Spirakis, P.G.: The complexity of optimal design of temporally connected graphs. Theory Comput. Syst. 61(3), 907–944 (2017)

    Article  MathSciNet  Google Scholar 

  3. Akrida, E.C., Mertzios, G., Spirakis, P.G., Zamaraev, V.: Temporal vertex covers and sliding time windows. In: International Colloquium on Automata, Languages and Programming (ICALP) (2018)

    Google Scholar 

  4. Ausiello, G., Protasi, M., Marchetti-Spaccamela, A., Gambosi, G., Crescenzi, P., Kann, V.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-58412-1

    Book  MATH  Google Scholar 

  5. Biswas, S., Ganguly, A., Shah, R.: Restricted shortest path in temporal graphs. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 13–27. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22849-5_2

    Chapter  Google Scholar 

  6. Bodlaender, H.L., van der Zanden, T.C.: On exploring temporal graphs of small pathwidth. CoRR, abs/1807.11869 (2018)

    Google Scholar 

  7. Casteigts, A., Flocchini, P.: Deterministic algorithms in dynamic networks: formal models and metrics. Technical report, Defence R&D Canada, April 2013

    Google Scholar 

  8. Chan, T.-H.H., Ning, L.: Fast convergence for consensus in dynamic networks. ACM Trans. Algorithms 10, 15-1 (2014)

    Google Scholar 

  9. Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation algorithms for the job interval selection problem and related scheduling problems. Math. Oper. Res. 31, 730–738 (2006)

    Article  MathSciNet  Google Scholar 

  10. Clementi, A.E.F., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time of edge-Markovian evolving graphs. SIAM J. Discrete Math. (SIDMA) 24(4), 1694–1712 (2010)

    Article  MathSciNet  Google Scholar 

  11. Demetrescu, C., Italiano, G.F.: Algorithmic techniques for maintaining shortest routes in dynamic networks. Electron. Notes Theor. Comput. Sci. 171, 3–15 (2007)

    Article  Google Scholar 

  12. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 444–455. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7_36

    Chapter  Google Scholar 

  13. Himmel, A.-S., Molter, H., Niedermeier, R., Sorge, M.: Adapting the Bron-Kerbosch algorithm for enumerating maximal cliques in temporal graphs. Soc. Netw. Anal. Min. 7(1), 35:1–35:16 (2017)

    Article  Google Scholar 

  14. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 250–262. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9_20

    Chapter  Google Scholar 

  15. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks. In: ACM Symposium on Theory of Computing (STOC), pp. 504–513 (2000)

    Google Scholar 

  16. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley Longman, Boston (2005)

    Google Scholar 

  17. Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 657–668. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2_57

    Chapter  Google Scholar 

  18. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. Theor. Comput. Sci. 634, 1–23 (2016)

    Article  MathSciNet  Google Scholar 

  19. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Upper Saddle River (1982)

    MATH  Google Scholar 

  20. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MathSciNet  Google Scholar 

  21. Spieksma, F.C.R.: On the approximability of an interval scheduling problem. J. Sched. 2, 215–227 (1999)

    Article  MathSciNet  Google Scholar 

  22. Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams. Theor. Comput. Sci. 609, 245–252 (2016)

    Article  MathSciNet  Google Scholar 

  23. Wagner, D., Willhalm, T., Zaroliagis, C.D.: Dynamic shortest paths containers. Electron. Notes Theor. Comput. Sci. 92, 65–84 (2004)

    Article  Google Scholar 

  24. Zhuang, H., Sun, Y., Tang, J., Zhang, J., Sun, X.: Influence maximization in dynamic social networks. In: International Conference on Data Mining (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni C. Akrida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akrida, E.C., Mertzios, G.B., Spirakis, P.G. (2019). The Temporal Explorer Who Returns to the Base. In: Heggernes, P. (eds) Algorithms and Complexity. CIAC 2019. Lecture Notes in Computer Science(), vol 11485. Springer, Cham. https://doi.org/10.1007/978-3-030-17402-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17402-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17401-9

  • Online ISBN: 978-3-030-17402-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics