Abstract
This paper presents an approach for the detection of critical camera configurations in unorganized image sets with (approximately) known internal camera parameters. Critical configurations are caused by an insufficient distance between cameras compared to the distance of the observed scene and can cause problems in triangulation-based structure from motion application.
We give a summary of existing techniques and propose a new approach for the detection of image pairs with a critical camera configuration based on classification using a random forest. To this end, several features characterizing the quality of the reconstructed 3D points as well as the estimated camera poses have been defined and evaluated for various configurations. The proposed approach is integrated into the structure from motion framework COLMAP demonstrating its potential on an independent real-world dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The eigenvalues of a rotation matrix are \((1,e^{i\theta },e^{-i\theta })\), where the last two are complex conjugate with \(\theta \) as the angle of rotation. The eigenvector corresponding to the eigenvalue 1 is the axis of rotation.
- 2.
https://demuc.de/colmap, Version 3.5.
References
Beder, C., Steffen, R.: Determining an initial image pair for fixing the scale of a 3D reconstruction from an image sequence. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 657–666. Springer, Heidelberg (2006). https://doi.org/10.1007/11861898_66
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a dominant plane. In: CVPR (2005)
Enqvist, O., Kahl, F., Olsson, C.: Non-sequential structure from motion. In: ICCV Workshop (2011)
Farenzena, M., et al.: Towards unsupervised reconstruction of architectural models. In: Vision, Modeling and Visualization Conference (2008)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Förstner, W.: Quality assessment of object location and point transfer using digital image correlation techniques. In: 25.3A, pp. 197–219 (1984)
Frahm, J.-M., Pollefeys, M.: RANSAC for (quasi-)degenerate data (QDEGSAC). In: CVPR (2006)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)
Hartley, R.I.: Self-calibration from multiple views with a rotating camera. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 471–478. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57956-7_52
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)
Hess-Flores, M., Knoblauch, D., Duchaineau, M.A., Joy, K.I., Kuester, F.: Ray divergence-based bundle adjustment conditioning for multi-view stereo. In: Ho, Y.-S. (ed.) PSIVT 2011. LNCS, vol. 7087, pp. 153–164. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25367-6_14
Irani, M., Anandan, P.: Parallax geometry of pairs of points for 3D scene analysis. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 17–30. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0015520
Kähler, O., Denzler, J.: Detection of planar patches in handheld image sequences. In: Photogrammetric Computer Vision (2006)
Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier, Amsterdam (1996)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)
Michelini, M., Mayer, H.: Detection of critical camera configurations for structure from motion. In: ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-3/W1, pp. 73–78 (2014)
Michelini, M., Mayer, H.: Efficient wide baseline structure from motion. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-3, pp. 99–106 (2016)
Moulon, P., Monasse, P., Marlet, R.: Adaptive structure from motion with a contrario model estimation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7727, pp. 257–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37447-0_20
Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–777 (2004)
Schönberger, J.L., Frahm, J.-M.: Structure-from-motion revisited. In: CVPR (2016)
Thormählen, T., Broszio, H., Weissenfeld, A.: Keyframe selection for camera motion and structure estimation from multiple views. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 523–535. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24670-1_40
Toldo, R., et al.: Hierarchical structure-and-motion recovery from uncalibrated images. In: Computer Vision and Image Understanding 140.C, pp. 127–143 (2015)
Torr, P.H.S.: An assessment of information criteria for motion model selection. In: CVPR (1997)
Torr, P.H.S., Fitzgibbon, A.W., Zisserman, A.: The problem of degeneracy in structure and motion recovery from uncalibrated image sequences. IJCV 32(1), 27–44 (1999)
Torr, P.H.S., Zisserman, A., Maybank, S.J.: Robust detection of degenerate configurations whilst estimating the fundamental matrix. Comput. Vis. Image Underst. 71(3), 312–333 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Michelini, M., Mayer, H. (2020). Detection of Critical Camera Configurations for Structure from Motion Using Random Forest. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12046. Springer, Cham. https://doi.org/10.1007/978-3-030-41404-7_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-41404-7_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41403-0
Online ISBN: 978-3-030-41404-7
eBook Packages: Computer ScienceComputer Science (R0)