Nothing Special   »   [go: up one dir, main page]

Skip to main content

Detection of Critical Camera Configurations for Structure from Motion Using Random Forest

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12046))

Included in the following conference series:

  • 1499 Accesses

Abstract

This paper presents an approach for the detection of critical camera configurations in unorganized image sets with (approximately) known internal camera parameters. Critical configurations are caused by an insufficient distance between cameras compared to the distance of the observed scene and can cause problems in triangulation-based structure from motion application.

We give a summary of existing techniques and propose a new approach for the detection of image pairs with a critical camera configuration based on classification using a random forest. To this end, several features characterizing the quality of the reconstructed 3D points as well as the estimated camera poses have been defined and evaluated for various configurations. The proposed approach is integrated into the structure from motion framework COLMAP demonstrating its potential on an independent real-world dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The eigenvalues of a rotation matrix are \((1,e^{i\theta },e^{-i\theta })\), where the last two are complex conjugate with \(\theta \) as the angle of rotation. The eigenvector corresponding to the eigenvalue 1 is the axis of rotation.

  2. 2.

    https://demuc.de/colmap, Version 3.5.

References

  1. Beder, C., Steffen, R.: Determining an initial image pair for fixing the scale of a 3D reconstruction from an image sequence. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 657–666. Springer, Heidelberg (2006). https://doi.org/10.1007/11861898_66

    Chapter  Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  3. Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a dominant plane. In: CVPR (2005)

    Google Scholar 

  4. Enqvist, O., Kahl, F., Olsson, C.: Non-sequential structure from motion. In: ICCV Workshop (2011)

    Google Scholar 

  5. Farenzena, M., et al.: Towards unsupervised reconstruction of architectural models. In: Vision, Modeling and Visualization Conference (2008)

    Google Scholar 

  6. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  7. Förstner, W.: Quality assessment of object location and point transfer using digital image correlation techniques. In: 25.3A, pp. 197–219 (1984)

    Google Scholar 

  8. Frahm, J.-M., Pollefeys, M.: RANSAC for (quasi-)degenerate data (QDEGSAC). In: CVPR (2006)

    Google Scholar 

  9. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  10. Hartley, R.I.: Self-calibration from multiple views with a rotating camera. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 471–478. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57956-7_52

    Chapter  Google Scholar 

  11. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  12. Hess-Flores, M., Knoblauch, D., Duchaineau, M.A., Joy, K.I., Kuester, F.: Ray divergence-based bundle adjustment conditioning for multi-view stereo. In: Ho, Y.-S. (ed.) PSIVT 2011. LNCS, vol. 7087, pp. 153–164. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25367-6_14

    Chapter  Google Scholar 

  13. Irani, M., Anandan, P.: Parallax geometry of pairs of points for 3D scene analysis. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 17–30. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0015520

    Chapter  Google Scholar 

  14. Kähler, O., Denzler, J.: Detection of planar patches in handheld image sequences. In: Photogrammetric Computer Vision (2006)

    Google Scholar 

  15. Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier, Amsterdam (1996)

    MATH  Google Scholar 

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  17. Michelini, M., Mayer, H.: Detection of critical camera configurations for structure from motion. In: ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-3/W1, pp. 73–78 (2014)

    Article  Google Scholar 

  18. Michelini, M., Mayer, H.: Efficient wide baseline structure from motion. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-3, pp. 99–106 (2016)

    Article  Google Scholar 

  19. Moulon, P., Monasse, P., Marlet, R.: Adaptive structure from motion with a contrario model estimation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7727, pp. 257–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37447-0_20

    Chapter  Google Scholar 

  20. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–777 (2004)

    Article  Google Scholar 

  21. Schönberger, J.L., Frahm, J.-M.: Structure-from-motion revisited. In: CVPR (2016)

    Google Scholar 

  22. Thormählen, T., Broszio, H., Weissenfeld, A.: Keyframe selection for camera motion and structure estimation from multiple views. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 523–535. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24670-1_40

    Chapter  Google Scholar 

  23. Toldo, R., et al.: Hierarchical structure-and-motion recovery from uncalibrated images. In: Computer Vision and Image Understanding 140.C, pp. 127–143 (2015)

    Article  Google Scholar 

  24. Torr, P.H.S.: An assessment of information criteria for motion model selection. In: CVPR (1997)

    Google Scholar 

  25. Torr, P.H.S., Fitzgibbon, A.W., Zisserman, A.: The problem of degeneracy in structure and motion recovery from uncalibrated image sequences. IJCV 32(1), 27–44 (1999)

    Article  Google Scholar 

  26. Torr, P.H.S., Zisserman, A., Maybank, S.J.: Robust detection of degenerate configurations whilst estimating the fundamental matrix. Comput. Vis. Image Underst. 71(3), 312–333 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Michelini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Michelini, M., Mayer, H. (2020). Detection of Critical Camera Configurations for Structure from Motion Using Random Forest. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12046. Springer, Cham. https://doi.org/10.1007/978-3-030-41404-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41404-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41403-0

  • Online ISBN: 978-3-030-41404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics