Nothing Special   »   [go: up one dir, main page]

Skip to main content

Determining an Initial Image Pair for Fixing the Scale of a 3D Reconstruction from an Image Sequence

  • Conference paper
Pattern Recognition (DAGM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4174))

Included in the following conference series:

Abstract

Algorithms for metric 3d reconstruction of scenes from calibrated image sequences always require an initialization phase for fixing the scale of the reconstruction. Usually this is done by selecting two frames from the sequence and fixing the length of their base-line. In this paper a quality measure, that is based on the uncertainty of the reconstructed scene points, for the selection of such a stable image pair is proposed. Based on this quality measure a fully automatic initialization phase for simultaneous localization and mapping algorithms is derived. The proposed algorithm runs in real-time and some results for synthetic as well as real image sequences are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beardsley, P.A., Torr, P.H.S., Zisserman, A.: 3d model acquisition from extended image sequences. In: Proc. of ECCV (2), pp. 683–695 (1996)

    Google Scholar 

  2. Criminisi, A., Reid, I., Zisserman, A.: A plane measuring device. Image and Vision Computing 17(8), 625–634 (1999)

    Article  Google Scholar 

  3. Davison, A.J., Murray, D.W.: Simultaneous localisation and map-building using active vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 865–880 (2002)

    Article  Google Scholar 

  4. Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: Proc. International Conference on Computer Vision, Nice, pp. 1403–1410 (October 2003)

    Google Scholar 

  5. Diebel, J., Reuterswärd, K., Thrun, S., Davis, J., Gupta, R.: Simultaneous localization and mapping with active stereo vision. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3436–3443 (2004)

    Google Scholar 

  6. Förstner, W.: A framework for low level feature extraction. In: Proc. of European Conference on Computer Vision, pp. 383–394 (1994)

    Google Scholar 

  7. Harris, C.G., Stephens, M.J.: A combined corner and edge detector. In: Fourth Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  8. Heuel, S., Förstner, W.: Matching, reconstructing and grouping 3d lines from multiple views using uncertain projective geometry. In: CVPR 2001. IEEE, Los Alamitos (2001)

    Google Scholar 

  9. Heuel, S.: Uncertain Projective Geometry. LNCS, vol. 3008. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  10. Kanatani, K.: Uncertainty modeling and model selection for geometric inference. IEEE Transaction on Pattern Analysis and Machine Intelligence 26(10), 1307–1319 (2004)

    Article  Google Scholar 

  11. Kanatani, K., Morris, D.D.: Gauges and gauge transformations for uncertainty description of geometric structure with indeterminacy. IEEE Transactions on Information Theory 47(5), 2017–2028 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Koch, R., Pollefeys, M., Van Gool, L.: Robust calibration and 3d geometric modeling from large collections of uncalibrated images. In: Förstner, W., Buhmann, J., Faber, A., Faber, P. (eds.) Proceedings of the DAGM, Informatik Aktuell, pp. 412–420. Springer, Heidelberg (1999)

    Google Scholar 

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC, pp. 384–393 (2002)

    Google Scholar 

  15. Meltzer, J., Gupta, R., Ming-Hsuan, Y., Soatto, S.: Simultaneous localization and mapping using multiple view feature descriptors. In: Proc. of IROS (2004)

    Google Scholar 

  16. Nistér, D.: Frame decimation for structure and motion. In: Pollefeys, M., Van Gool, L., Zisserman, A., Fitzgibbon, A.W. (eds.) SMILE 2000. LNCS, vol. 2018, pp. 17–34. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(6), 756–777 (2004)

    Article  Google Scholar 

  18. Pollefeys, M., Koch, R., Vergauwen, M., Van Gool, L.: Automated reconstruction of 3d scenes from sequences of images. ISPRS Journal of Photogrammetry and Remote Sensing 55(4), 251–267 (2000)

    Article  Google Scholar 

  19. Pollefeys, M., Van Gool, L.: A stratified approach to metric self-calibration. In: Proc. CVPR, pp. 407–412 (1997)

    Google Scholar 

  20. Pollefeys, M., Van Gool, L.: Stratified self-calibration with the modulus constraint. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(8), 707–724 (1999)

    Article  Google Scholar 

  21. Pollefeys, M., Van Gool, L., Vergauwen, M., Cornelis, K., Verbiest, F., Tops, J.: Video-to-3d. In: Proceedings of Photogrammetric Computer Vision (2002)

    Google Scholar 

  22. Repko, J., Pollefeys, M.: 3d models from extended uncalibrated video sequences: Addressing key-frame selection and projective drift. In: Proc. of 3DIM (2005)

    Google Scholar 

  23. Se, S., Lowe, D.G., Little, J.J.: Vision-Based Global Localization and Mapping for Mobile Robots. IEEE Transactions on Robotics 21(3), 364–375 (2005)

    Article  Google Scholar 

  24. Shi, J., Tomasi, C.: Good features to track. In: 1994 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 1994), pp. 593–600 (1994)

    Google Scholar 

  25. Stewenius, H., Engels, C., Nister, D.: Recent developments on direct relative orientation. ISPRS Journal (to appear)

    Google Scholar 

  26. Thormählen, T., Broszio, H., Weissenfeld, A.: Keyframe selection for camera motion and structure estimation from multiple views. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 523–535. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Thrun, S., Montemerlo, M., Koller, D., Wegbreit, B., Nieto, J., Nebot, E.: Fastslam: An efficient solution to the simultaneous localization and mapping problem with unknown data association. Journal of Machine Learning Research (to appear)

    Google Scholar 

  28. Torr, P.H.S.: Bayesian model estimation and selection for epipolar geometry and generic manifold fitting. International Journal of Computer Vision 50(1), 35–61 (2002)

    Article  MATH  Google Scholar 

  29. Torr, P., Zisserman, A.: Feature based methods for structure and motion estimation. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 278–294. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beder, C., Steffen, R. (2006). Determining an Initial Image Pair for Fixing the Scale of a 3D Reconstruction from an Image Sequence. In: Franke, K., Müller, KR., Nickolay, B., Schäfer, R. (eds) Pattern Recognition. DAGM 2006. Lecture Notes in Computer Science, vol 4174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861898_66

Download citation

  • DOI: https://doi.org/10.1007/11861898_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44412-1

  • Online ISBN: 978-3-540-44414-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics