Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimized Algorithms and Architectures for Montgomery Multiplication for Post-quantum Cryptography

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11829))

Included in the following conference series:

Abstract

Finite field multiplication plays the main role determining the efficiency of public key cryptography systems based on RSA and elliptic curve cryptography (ECC). Most recently, quantum-safe cryptographic systems are proposed based on supersingular isogenies on elliptic curves which require large integer multiplications over extended prime fields. In this work, we present two Montgomery multiplication architectures for special primes used in a post-quantum cryptography system known as supersingular isogeny key encapsulation (SIKE). We optimize two existing Montgomery multiplication algorithms and develop area-efficient and time-efficient Montgomery multiplication architectures for hardware implementations of post-quantum cryptography. Our proposed time-efficient architecture is \(32\%\) to \(42\%\) faster than the leading one (depending on the prime size) available in the literature which has been used in original SIKE submission to the NIST standardization process. The area-efficient architecture is \(42\%\) to \(50\%\) smaller than the counterparts and is about \(3\%\) to \(11\%\) faster depending on the NIST security level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, FOCS 1994, pp. 124–134 (1994)

    Google Scholar 

  2. Chen, L., et al.: Report on Post-Quantum Cryptography (2016). NIST IR 8105

    Google Scholar 

  3. Jao, D., et al.: Supersingular isogeny key encapsulation. Submission to the NIST Post-Quantum Standardization Project (2019)

    Google Scholar 

  4. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

    Chapter  MATH  Google Scholar 

  5. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M., Jao, D.: Post-quantum cryptography on FPGA based on isogenies on elliptic curves. IEEE Trans. Circuit. Syst. I: Regul. Pap. 64(1), 86–99 (2017)

    Article  Google Scholar 

  6. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: Fast hardware architectures for supersingular isogeny Diffie-Hellman key exchange on FPGA. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 191–206. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49890-4_11

    Chapter  Google Scholar 

  7. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: A high-performance and scalable hardware architecture for isogeny-based cryptography. IEEE Trans. Comput. 67(11), 1594–1609 (2018)

    Article  MathSciNet  Google Scholar 

  8. Roy, D.B., Mukhopadhyay, D.: Post quantum ecc on fpga platform. Cryptology ePrint Archive, Report 2019/568 (2019). https://eprint.iacr.org/2019/568

  9. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)

    Article  MathSciNet  Google Scholar 

  10. Mrabet, A., et al.: High-performance elliptic curve cryptography by using the CIOS method for modular multiplication. In: Cuppens, Frédéric, Cuppens, Nora, Lanet, Jean-Louis, Legay, Axel (eds.) CRiSIS 2016. LNCS, vol. 10158, pp. 185–198. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54876-0_15

    Chapter  Google Scholar 

  11. McIvor, C., McLoone, M., McCanny, J.V.: High-radix systolic modular multiplication on reconfigurable hardware. In: IEEE International Conference on Field-Programmable Technology, pp. 13–18 (2005)

    Google Scholar 

  12. Jao, D., et al.: Supersingular isogeny key encapsulation. Submission to the NIST Post-Quantum Standardization Project (2017)

    Google Scholar 

  13. McIvor, C., McLoone, M., McCanny, J.V.: FPGA Montgomery multiplier architectures - a comparison. In: 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 279–282, April 2004

    Google Scholar 

  14. Alrimeih, H., Rakhmatov, D.: Fast and flexible hardware support for ECC over multiple standard prime fields. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(12), 2661–2674 (2014)

    Article  Google Scholar 

  15. Blum, T., Paar, C.: High-radix montgomery modular exponentiation on reconfigurable hardware. IEEE Trans. Comput. 50(7), 759–764 (2001)

    Article  Google Scholar 

  16. Chen, G., Bai, G., Chen, H.: A high-performance elliptic curve cryptographic processor for general curves over \({\rm GF}(p)\) based on a systolic arithmetic unit. IEEE Trans. Circ. Syst. II: Express Briefs 54(5), 412–416 (2007)

    Article  Google Scholar 

  17. Eberle, H., Gura, N., Shantz, S.C., Gupta, V., Rarick, L., Sundaram, S.: A public-key cryptographic processor for RSA and ECC. In: Proceedings of 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors, pp. 98–110, September 2004

    Google Scholar 

  18. Ghosh, S., Alam, M., Roy Chowdhury, D., Sen Gupta, I.: Parallel crypto-devices for GF(p) elliptic curve multiplication resistant against side channel attacks. Comput. Electr. Eng. 35, 329–338 (2009)

    Article  Google Scholar 

  19. Sakiyama, K., Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: Reconfigurable modular arithmetic logic unit for high-performance public-key cryptosystems. In: Bertels, K., Cardoso, J.M.P., Vassiliadis, S. (eds.) ARC 2006. LNCS, vol. 3985, pp. 347–357. Springer, Heidelberg (2006). https://doi.org/10.1007/11802839_43

    Chapter  Google Scholar 

  20. Tenca, A.F., Koç, Ç.K.: A scalable architecture for montgomery nultiplication. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 94–108. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_10

    Chapter  Google Scholar 

  21. Vliegen, J., et al.: A compact FPGA-based architecture for elliptic curve cryptography over prime fields. In: ASAP 2010–21st IEEE International Conference on Application-specific Systems, Architectures and Processors, pp. 313–316, July 2010

    Google Scholar 

  22. Kaya Koc, C., Acar, T., Kaliski, B.S.: Analyzing and comparing montgomery multiplication algorithms. IEEE Micro 16(3), 26–33 (1996)

    Article  Google Scholar 

  23. Dussé, S.R., Kaliski, B.S.: A cryptographic library for the motorola DSP56000. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 230–244. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46877-3_21

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the reviewers for their comments. This work is supported in parts by NSF CNS-1801341, NIST-60NANB16D246, and ARO W911NF-17-1-0311.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rami El Khatib , Reza Azarderakhsh or Mehran Mozaffari-Kermani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Khatib, R., Azarderakhsh, R., Mozaffari-Kermani, M. (2019). Optimized Algorithms and Architectures for Montgomery Multiplication for Post-quantum Cryptography. In: Mu, Y., Deng, R., Huang, X. (eds) Cryptology and Network Security. CANS 2019. Lecture Notes in Computer Science(), vol 11829. Springer, Cham. https://doi.org/10.1007/978-3-030-31578-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31578-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31577-1

  • Online ISBN: 978-3-030-31578-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics