Nothing Special   »   [go: up one dir, main page]

Skip to main content

Reconfigurable Modular Arithmetic Logic Unit for High-Performance Public-Key Cryptosystems

  • Conference paper
Reconfigurable Computing: Architectures and Applications (ARC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3985))

Included in the following conference series:

  • 1024 Accesses

Abstract

This paper presents a reconfigurable hardware architecture for Public-key cryptosystems. By changing the connections of coarse grain Carry-Save Adders (CSAs), the datapath provides a high performance for both RSA and Elliptic Curve Cryptography (ECC). In addition, we introduce another reconfigurability for the flip-flops in order to make the best of hardware resources. The results of FPGA implementation show that better performance is obtained for ECC on the same hardware platform.

Kazuo Sakiyama, Nele Mentens and Lejla Batina are funded by FWO projects (G.0450.04, G.0141.03). This research has been also partially supported by the EU IST FP6 projects SCARD and ECRYPT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Batina, L., Bruin-Muurling, G., Örs, S.B.: Flexible hardware design for RSA and elliptic curve cryptosystems. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 250–263. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Batina, L., Muurling, G.: Montgomery in Practice: How to Do It More Efficiently in Hardware. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 40–52. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Crowe, F., Daly, A., Marnane, W.: A Scalable Dual Mode Arithmetic Unit for Public Key Cryptosystems. In: Proc. IEEE International Conference Conference on Information Technology - ITCC 2005, Las Vegas, pp. 568–573 (2005)

    Google Scholar 

  4. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Koblitz, N.: Elliptic curve cryptosystem. Math. Comp. 48, 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kocher, P., Jaffe, J., Jun, B.: Introduction to differential power analysis and related attacks (1998), http://www.cryptography.com/dpa/technical

  7. McIvor, C., McLoone, M., McCanny, J., Daly, A., Marnane, W.: Fast Montgomery Modular Multiplication and RSA Cryptographic Processor Architectures. In: Proceedings of 37th Annual Asilomar Conference on Signals, Systems and Computers, pp. 379–384 (November 2003)

    Google Scholar 

  8. Menezes, A.J.: Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, Dordrecht (1993)

    Book  MATH  Google Scholar 

  9. Miller, V.: Uses of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  10. Quisquater, J.-J., Couvreur, C.: Fast decipherment algorithm for RSA public-key cryptosystem. Electronics Letters 18, 905–907 (1982)

    Article  Google Scholar 

  11. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tenca, A.F., Koç, Ç.K.: A scalable architecture for Montgomery multiplication. In: Koç, Ç.K., Paar, C. (eds.) Proceedings of 1st International Workshop on Cryptographic Hardware and Embedded Systems (CHES), Worcester, Massachusetts, USA. LNCS, vol. 1717, pp. 94–108. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sakiyama, K., Mentens, N., Batina, L., Preneel, B., Verbauwhede, I. (2006). Reconfigurable Modular Arithmetic Logic Unit for High-Performance Public-Key Cryptosystems. In: Bertels, K., Cardoso, J.M.P., Vassiliadis, S. (eds) Reconfigurable Computing: Architectures and Applications. ARC 2006. Lecture Notes in Computer Science, vol 3985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11802839_43

Download citation

  • DOI: https://doi.org/10.1007/11802839_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36708-6

  • Online ISBN: 978-3-540-36863-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics