Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhance Object Detection Capability with the Object Relation

  • Conference paper
  • First Online:
Pervasive Systems, Algorithms and Networks (I-SPAN 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1080))

Included in the following conference series:

  • 1073 Accesses

Abstract

The technique of image recognitions is becoming more and more important to identify objects, places, and people. Currently, several deep learning methods on image recognition have been proposed. To identify multiple targets, the notion of region proposal has proposed which uses multiple resolution methods to improve accuracy, such as R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, SSD, and YOLO. However, these improvements are based on pixel. Still, there are uncertain objects which the human eye observes in the surrounding scene. At this time, we make guesses based on other, more clear objects. In the paper, we propose a method for object recognition using the probability of correlation between the objects. When performing object recognition in an image, we calculate the probability of correlation between the objects to adjust the related parameters and the weight values. Our proposed method improve the overall recognition of objects in the image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  2. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–2634 (2015)

    Google Scholar 

  3. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2015)

    Article  Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann Publishers Inc. (1995)

    Google Scholar 

  9. Johnson, J., Karpathy, A., Fei-Fei, L.: DenseCap: fully convolutional localization networks for dense captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4565–4574 (2016)

    Google Scholar 

  10. Krause, J., Johnson, J., Krishna, R., Fei-Fei, L.: A hierarchical approach for generating descriptive image paragraphs. arXiv preprint arXiv:1611.06607 (2016)

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Langley, P., Iba, W., Thompson, K., et al.: An analysis of Bayesian classifiers. In: AAAI, vol. 90, pp. 223–228 (1992)

    Google Scholar 

  13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  14. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  15. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  17. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  20. Uijlings, J.R.R., Van De Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  21. Wang, H., Raj, B.: On the origin of deep learning. arXiv preprint arXiv:1702.07800 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Lin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, MC., Sharma, L., Wu, SL. (2019). Enhance Object Detection Capability with the Object Relation. In: Esposito, C., Hong, J., Choo, KK. (eds) Pervasive Systems, Algorithms and Networks. I-SPAN 2019. Communications in Computer and Information Science, vol 1080. Springer, Cham. https://doi.org/10.1007/978-3-030-30143-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30143-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30142-2

  • Online ISBN: 978-3-030-30143-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics