Abstract
As one of the fundamental problems of scene understanding and modeling, object detection has attracted extensive attention in the research communities of computer vision and artificial intelligence. Recently, inspired by the success of deep learning, various deep neural network-based models have been proposed and become the de facto solution for object detection. Therefore, in this chapter, we propose to present an overview of object detection techniques in the era of deep learning. We will first formulate the problem of object detection in the framework of deep learning, and then present two mainstream architectures, i.e., the one-stage model and the two-stage model, with the widely used detectors such as Fast R-CNN, YOLO, and their variants. Lastly, we will also discuss the potential and possible improvements on current methods and outline trends for further study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Agarwal S, Terrail JOD, Jurie F (2018) Recent advances in object detection in the age of deep convolutional neural networks. arXiv:180903193
Bochkovskiy A, Wang CY, Liao HYM (2020) Yolov4: optimal speed and accuracy of object detection. arXiv:200410934
Cai Z, Vasconcelos N (2018) Cascade r-cnn: delving into high quality object detection. In: Proceedings of the international conference on computer vision and pattern recognition, pp 6154–6162
Chen K, Wang J, Pang J, Cao Y, Xiong Y, Li X, Sun S, Feng W, Liu Z, Xu J et al (2019a) Mmdetection: open mmlab detection toolbox and benchmark. arXiv:190607155
Chen Y, Han C, Li Y, Huang Z, Jiang Y, Wang N, Zhang Z (2019b) Simpledet: a simple and versatile distributed framework for object detection and instance recognition. arXiv:190305831
Chen Y, Yang T, Zhang X, Meng G, Pan C, Sun J (2019c) Detnas: neural architecture search on object detection. arXiv:190310979
Dai J, Li Y, He K, Sun J (2016) R-fcn: object detection via region-based fully convolutional networks. In: Advances in neural information processing systems, pp 379–387
Dong Z, Li G, Liao Y, Wang F, Ren P, Qian C (2020) Centripetalnet: pursuing high-quality keypoint pairs for object detection. In: Proceedings of the international conference on computer vision and pattern recognition, pp 10519–10528
Duan K, Bai S, Xie L, Qi H, Huang Q, Tian Q (2019) Centernet: keypoint triplets for object detection. arXiv:190408189
Duan K, Xie L, Qi H, Bai S, Huang Q, Tian Q (2020) Corner proposal network for anchor-free, two-stage object detection. In: Proceedings of the European conference on computer vision, pp 1–17
Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J, Zisserman A (2015) The pascal visual object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136
Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2009) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645
Fu CY, Liu W, Ranga A, Tyagi A, Berg aC (2017) Dssd: deconvolutional single shot detector. arXiv:170106659
Geiger A, Lenz P, Stiller C, Urtasun R (2013) Vision meets robotics: the kitti dataset. Int J Robot Res 32(11):1231–1237
Ghiasi G, Lin TY, Le QV (2019) Nas-fpn: Learning scalable feature pyramid architecture for object detection. In: Proceedings of the international conference on computer vision and pattern recognition, pp 7036–7045
Girshick R (2015) Fast r-cnn. In: Proceedings of the international conference on computer vision, pp 1440–1448
Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the international conference on computer vision and pattern recognition, pp 580–587
Girshick R, Radosavovic I, Gkioxari G, Dollár P, He K (2018) Detectron. https://github.com/facebookresearch/detectron
Han J, Zhang D, Cheng G, Liu N, Xu D (2018) Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Process Mag 35(1):84–100
He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904–1916
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the international conference on computer vision and pattern recognition, pp 770–778
He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 2961–2969
Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv:170404861
Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, et al (2017) Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the international conference on computer vision and pattern recognition, pp 7310–7311
Huang L, Yang Y, Deng Y, Yu Y (2015) Densebox: unifying landmark localization with end to end object detection. arXiv:150904874
Huang Z, Huang L, Gong Y, Huang C, Wang X (2019) Mask scoring r-cnn. In: Proceedings of the international conference on computer vision and pattern recognition, pp 6409–6418
Jeong J, Park H, Kwak N (2017) Enhancement of ssd by concatenating feature maps for object detection. arXiv:170509587
Jiao L, Zhang F, Liu F, Yang S, Li L, Feng Z, Qu R (2019) A survey of deep learning-based object detection. arXiv:190709408
Kirillov A, He K, Girshick R, Rother C, Dollár P (2019) Panoptic segmentation. In: Proceedings of the international conference on computer vision and pattern recognition, pp 9404–9413
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105
Kuznetsova A, Rom H, Alldrin N, Uijlings J, Krasin I, Pont-Tuset J, Kamali S, Popov S, Malloci M, Duerig T, et al (2018) The open images dataset v4: unified image classification, object detection, and visual relationship detection at scale. arXiv:181100982
Lan S, Ren Z, Wu Y, Davis LS, Hua G (2020) Saccadenet: a fast and accurate object detector. In: Proceedings of the international conference on computer vision and pattern recognition, pp 10397–10406
Law H, Deng J (2018) Cornernet: detecting objects as paired keypoints. In: Proceedings of the European conference on computer vision, pp 734–750
Law H, Teng Y, Russakovsky O, Deng J (2019) Cornernet-lite: efficient keypoint based object detection. arXiv:190408900
Li Y, Chen Y, Wang N, Zhang Z (2019) Scale-aware trident networks for object detection. arXiv:190101892
Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: Proceedings of the European conference on computer vision. Springer, pp 740–755
Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the international conference on computer vision and pattern recognition, pp 2117–2125
Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M (2018) Deep learning for generic object detection: a survey. arXiv:180902165
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: single shot multibox detector. In: Proceedings of the European conference on computer vision. Springer, pp 21–37
Ma N, Zhang X, Zheng HT, Sun J (2018) Shufflenet v2: practical guidelines for efficient cnn architecture design. In: Proceedings of the European conference on computer vision, pp 116–131
Massa F, Girshick R (2018) Maskrcnn-benchmark: fast, modular reference implementation of instance segmentation and object detection algorithms in PyTorch. https://github.com/facebookresearch/maskrcnn-benchmark
Najibi M, Rastegari M, Davis LS (2016) G-cnn: an iterative grid based object detector. In: Proceedings of the international conference on computer vision and pattern recognition, pp 2369–2377
Pang Y, Wang T, Anwer RM, Khan FS, Shao L (2019) Efficient featurized image pyramid network for single shot detector. In: Proceedings of the international conference on computer vision and pattern recognition, pp 7336–7344
Pinheiro PO, Lin TY, Collobert R, Dollár P (2016) Learning to refine object segments. In: Proceedings of the European conference on computer vision. Springer, pp 75–91
Redmon J, Farhadi A (2017) Yolo9000: better, faster, stronger. In: Proceedings of the international conference on computer vision and pattern recognition, pp 7263–7271
Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv:180402767
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the international conference on computer vision and pattern recognition, pp 779–788
Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, pp 91–99
Rota Bulò S, Porzi L, Kontschieder P (2018) In-place activated batchnorm for memory-optimized training of dnns. In: Proceedings of the international conference on computer vision and pattern recognition, pp 5639–5647
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252
Singh B, Davis LS (2018) An analysis of scale invariance in object detection snip. In: Proceedings of the international conference on computer vision and pattern recognition, pp 3578–3587
Singh B, Najibi M, Davis LS (2018) Sniper: efficient multi-scale training. In: Advances in neural information processing systems, pp 9310–9320
Tian Z, Shen C, Chen H, He T (2019) Fcos: Fully convolutional one-stage object detection. arXiv:190401355
Tremblay J, To T, Birchfield S (2018) Falling things: a synthetic dataset for 3d object detection and pose estimation. In: International conference on computer vision and pattern recognition (workshop), pp 2038–2041
Uijlings JR, Van De Sande KE, Gevers T, Smeulders AW (2013) Selective search for object recognition. Int J Comput Vis 104(2):154–171
Wang H, Wang Q, Gao M, Li P, Zuo W (2018) Multi-scale location-aware kernel representation for object detection. In: Proceedings of the international conference on computer vision and pattern recognition, pp 1248–1257
Wang H, Kembhavi A, Farhadi A, Yuille AL, Rastegari M (2019a) Elastic: improving cnns with dynamic scaling policies. In: Proceedings of the international conference on computer vision and pattern recognition, pp 2258–2267
Wang J, Chen K, Yang S, Loy CC, Lin D (2019b) Region proposal by guided anchoring. In: Proceedings of the international conference on computer vision and pattern recognition, pp 2965–2974
Wu X, Sahoo D, Hoi SC (2019) Recent advances in deep learning for object detection. arXiv:190803673
Xia GS, Bai X, Ding J, Zhu Z, Belongie S, Luo J, Datcu M, Pelillo M, Zhang L (2018) Dota: a large-scale dataset for object detection in aerial images. In: Proceedings of the international conference on computer vision and pattern recognition, pp 3974–3983
Yang S, Luo P, Loy CC, Tang X (2016) Wider face: a face detection benchmark. In: Proceedings of the international conference on computer vision and pattern recognition, pp 5525–5533
Yang Z, Liu S, Hu H, Wang L, Lin S (2019) Reppoints: point set representation for object detection. arXiv:190411490
Yu F, Koltun V, Funkhouser T (2017) Dilated residual networks. In: Proceedings of the international conference on computer vision and pattern recognition, pp 472–480
Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Proceedings of the European conference on computer vision. Springer, pp 818–833
Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the international conference on computer vision and pattern recognition, pp 6848–6856
Zhao Q, Sheng T, Wang Y, Tang Z, Chen Y, Cai L, Ling H (2019a) M2det: a single-shot object detector based on multi-level feature pyramid network. Proc AAAI Conf Artif Intell 33:9259–9266
Zhao ZQ, Zheng P, Xu St, Wu X (2019b) Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Syst
Zhou P, Ni B, Geng C, Hu J, Xu Y (2018) Scale-transferrable object detection. In: Proceedings of the international conference on computer vision and pattern recognition, pp 528–537
Zhou X, Wang D, Krähenbühl P (2019a) Objects as points. arXiv:190407850
Zhou X, Zhuo J, Krahenbuhl P (2019b) Bottom-up object detection by grouping extreme and center points. In: Proceedings of the international conference on computer vision and pattern recognition, pp 850–859
Zhu C, He Y, Savvides M (2019) Feature selective anchor-free module for single-shot object detection. arXiv:190300621
Zhu Y, Zhao C, Wang J, Zhao X, Wu Y, Lu H (2017) Couplenet: coupling global structure with local parts for object detection. In: Proceedings of the international conference on computer vision, pp 4126–4134
Zou Z, Shi Z, Guo Y, Ye J (2019) Object detection in 20 years: a survey. arXiv:190505055
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Li, H., Jiang, X., Magnenat Thalmann, N. (2021). Object Detection: State of the Art and Beyond. In: Thalmann, N.M., Zhang, J.J., Ramanathan, M., Thalmann, D. (eds) Intelligent Scene Modeling and Human-Computer Interaction. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-030-71002-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-71002-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-71001-9
Online ISBN: 978-3-030-71002-6
eBook Packages: Computer ScienceComputer Science (R0)