Abstract
The Divide-and-Conquer approach is often used to solve hard instances of the Boolean satisfiability problem (SAT). In particular, it implies splitting an original SAT instance into a series of simpler subproblems. If this split satisfies certain conditions, then it is possible to use a stochastic pseudo-Boolean black-box function to estimate the time required for solving an original SAT instance with the chosen decomposition. One can use black-box optimization methods to minimize the function over the space of all possible decompositions. In the present study, we make use of peculiar features which stem from the NP-completeness of the Boolean satisfiability problem to improve this general approach. In particular, we show that the search space over which the black-box function is minimized can be extended by adding solver parameters and the SAT encoding parameters into it. In the computational experiments, we use the SMAC algorithm to optimize such black-box functions for hard SAT instances encoding the problems of cryptanalysis of several stream ciphers. The results show that the proposed approach outperforms the competition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ashlock, D.: Evolutionary Computation for Modeling and Optimization, 1st edn. Springer, New York (2010)
Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68913-5
Bard, G.V.: Algebraic Cryptanalysis, 1st edn. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-88757-9
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)
Borghoff, J., Knudsen, L.R., Matusiewicz, K.: Hill climbing algorithms and Trivium. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 57–73. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_4
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs - The eSTREAM. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3_18
Irkutsk supercomputer center of SB RAS. http://hpc.icc.ru
Courtois, N.T., Gawinecki, J.A., Song, G.: Contradiction immunity and guess-then-determine attacks on GOST. Tatra Mt. Math. Publ. 53(1), 2–13 (2012)
Eibach, T., Pilz, E., Völkel, G.: Attacking bivium using SAT solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 63–76. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7_7
Falkner, S., Lindauer, M., Hutter, F.: SpySMAC: automated configuration and performance analysis of SAT solvers. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 215–222. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_16
Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: PaInleSS: a framework for parallel SAT solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 233–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_15
Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. OR 13(5), 533–549 (1986)
Günther, C.G.: Alternating step generators controlled by De Bruijn sequences. In: Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 5–14. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5_2
Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel SAT solver. JSAT 6(4), 245–262 (2009)
Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001). https://doi.org/10.1016/S0377-2217(00)00100-4
Heule, M.J.H., Kullmann, O., Biere, A.: Cube-and-conquer for satisfiability. In: Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint Reasoning, pp. 31–59. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-3_2
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40
Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., Leyton-Brown, K.: The configurable SAT solver challenge (CSSC). Artif. Intell. 243, 1–5 (2015). https://doi.org/10.1016/j.artint.2016.09.006
Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: A distribution method for solving SAT in grids. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 430–435. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_39
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)
Kochemazov, S., Zaikin, O.: ALIAS: a modular tool for finding backdoors for SAT. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 419–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_25
Lasry, G.: A Methodology for the Cryptanalysis of Classical Ciphers with Search Metaheuristics. Ph.D. thesis, University of Kassel, Germany (2018). http://www.upress.uni-kassel.de/katalog/abstract.php?978-3-7376-0458-1
Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere et al. [4], pp. 131–153
Massacci, F.: Using Walk-SAT and Rel-SAT for cryptographic key search. In: IJCAI 1999, pp. 290–295 (1999)
Mcdonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat. Technical Report 2007/040, ECRYPT Stream Cipher Project (2007)
Metropolis, N., Ulam, S.: The Monte Carlo method. J. Amer. statistical assoc. 44(247), 335–341 (1949)
Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_7
Nossum, V.: SAT-based preimage attacks on SHA-1. Ph.D. thesis, University of OSLO, Department of Informatics (2012)
Otpuschennikov, I., Semenov, A., Gribanova, I., Zaikin, O., Kochemazov, S.: Encoding cryptographic functions to SAT using TRANSALG system. In: ECAI 2016. FAAI, vol. 285, pp. 1594–1595. IOS Press (2016)
Prestwich, S.D.: CNF encodings. In: Biere et al. [4], pp. 75–97
Semenov, A., Zaikin, O.: Algorithm for finding partitionings of hard variants of boolean satisfiability problem with application to inversion of some cryptographic functions. SpringerPlus 5(1), 1–16 (2016)
Semenov, A., Zaikin, O., Bespalov, D., Posypkin, M.: Parallel logical cryptanalysis of the generator A5/1 in BNB-grid system. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 473–483. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23178-0_43
Semenov, A., Zaikin, O., Otpuschennikov, I., Kochemazov, S., Ignatiev, A.: On cryptographic attacks using backdoors for SAT. In: AAAI 2018, pp. 6641–6648 (2018)
Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24
Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning. Symbolic Computation (Artificial Intelligence), pp. 466–483. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1_28
Walter, M., Bulygin, S., Buchmann, J.: Optimizing guessing strategies for algebraic cryptanalysis with applications to EPCBC. In: Kutyłowski, M., Yung, M. (eds.) Inscrypt 2012. LNCS, vol. 7763, pp. 175–197. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38519-3_12
Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994). https://doi.org/10.1007/BF00175354
Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: IJCAI 2003, pp. 1173–1178 (2003)
Zaikin, O., Kochemazov, S.: An improved SAT-based guess-and-determine attack on the alternating step generator. In: Nguyen, P., Zhou, J. (eds.) ISC 2017. LNCS, vol. 10599, pp. 21–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69659-1_2
Zaikin, O., Kochemazov, S.: Pseudo-boolean black-box optimization methods in the context of divide-and-conquer approach to solving hard SAT instances. In: OPTIMA 2018 (Supplementary Volume), pp. 76–87. DEStech Publications, Inc. (2018)
Acknowledgements
Authors thank Dr. Alexander Semenov for valuable preliminary discussions regarding the SAT algorithms parameter tuning in the context of Divide-and-Conquer solving. We would also like to thank anonymous reviewers for their valuable comments that made it possible to improve the quality of the present paper. The research was partially supported by Council for Grants of the President of the Russian Federation (grant no. MK-4155.2018.9) and by Russian Foundation for Basic Research (grant no. 19-07-00746-a).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zaikin, O., Kochemazov, S. (2019). Black-Box Optimization in an Extended Search Space for SAT Solving. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science(), vol 11548. Springer, Cham. https://doi.org/10.1007/978-3-030-22629-9_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-22629-9_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22628-2
Online ISBN: 978-3-030-22629-9
eBook Packages: Computer ScienceComputer Science (R0)