Nothing Special   »   [go: up one dir, main page]

Skip to main content

Assessing Arguments with Schemes and Fallacies

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2019)

Abstract

We present a logical framework allowing us to express assessment of facts (is it proven?) and arguments (is it sound?) together with a proof system to answer these questions. Our motivation is to clarify the notion of validity in the context of logic-based arguments along different aspects (such as the formulas used and the inference scheme). Originality lies in the possibility for the user to design their own argument schemes. We show that classical inference obtains when arguments are based on classical schemes (e.g. Hilbert axioms). We go beyond classical logic by distinguishing “proven” formulas from “uncontroversial” ones (whose negation is not proven). Hence a formal definition of a fallacious argument: it uses controversial formulas or schemes recognized as illicit. We express some rational arguments and fallacies in the form of schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The ex falso quodlibet expresses that from inconsistency anything can be deduced.

  2. 2.

    See e.g. https://www.logicallyfallacious.com/tools/lp/Bo/LogicalFallacies.

  3. 3.

    Also called False Dichotomy when the premises posit just two alternatives.

  4. 4.

    This is short for post hoc ergo propter hoc: “after this, therefore because of this.”.

  5. 5.

    There could be any number of items in the series of projected consequences.

  6. 6.

    This fallacy occurs when the circle is enlarged to include more than one step: The conclusion p is supported by premise q, which in turn is supported by p (though there could be any number of intervening steps).

  7. 7.

    One application is the legal principle that a person is innocent until proven guilty.

References

  1. Amgoud, L., Besnard, P.: Logical limits of abstract argumentation frameworks. J. Appl. Non-class. Log. 23(3), 229–267 (2013)

    Article  MathSciNet  Google Scholar 

  2. Amgoud, L., Maudet, N., Parsons, S.: An argumentation-based semantics for agent communication languages. In: 15th European Conference on Artificial Intelligence, vol. 2, pp. 38–42 (2002)

    Google Scholar 

  3. Bench-Capon, T., Dunne, P., Leng, P.: A dialogue game for dialectical interaction with expert systems. In: 12th Annual Conference Expert Systems & Applications, pp. 105–113 (1992)

    Google Scholar 

  4. Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and inconsistent knowledge bases. In: 9th Conference on Uncertainty in AI, pp. 411–419 (1993)

    Chapter  Google Scholar 

  5. Besnard, P., et al.: Introducing structured argumentation. Argum. Comput. 5(1), 1–4 (2014)

    Article  Google Scholar 

  6. Bisquert, P., Croitoru, M., de Saint Cyr, F.D., Hecham, A.: Formalizing cognitive acceptance of arguments: durum wheat selection interdisciplinary study. Minds Mach. 27(1), 233–252 (2017)

    Article  Google Scholar 

  7. D’Agostino, M., Modgil, S.: Classical logic, argument and dialectic. Artif. Intell. J. 262, 15–51 (2018)

    Article  MathSciNet  Google Scholar 

  8. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. J. 77, 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  9. Elvang-Gøransson, M., Krause, P., Fox, J.: Dialectic reasoning with inconsistent information. In: 9th Conference on Uncertainty in AI, pp. 114–121 (1993)

    Chapter  Google Scholar 

  10. FIPA: ACL message structure specification. Foundation for Intelligent Physical Agents (2002). http://www.fipa.org/specs/fipa00061/SC00061G.html. Accessed 30 June 2004

  11. Goranko, V.: Refutation systems in modal logic. Stud. Log. 53(2), 299–324 (1994)

    Article  MathSciNet  Google Scholar 

  12. Gordon, T.F., Prakken, H., Walton, D.: The Carneades model of argument and burden of proof. Artif. Intell. J. 171(10–15), 875–896 (2007)

    Article  MathSciNet  Google Scholar 

  13. Hamblin, C.L.: Fallacies. Methuen, London (1970)

    Google Scholar 

  14. Hunter, A.: Reasoning about the appropriateness of proponents for arguments. In: 23rd AAAI Conference on Artificial Intelligence, pp. 89–94 (2008)

    Google Scholar 

  15. Johnson, R.H., Blair, J.A.: Logical Self-defense. IDEA, New York (2006)

    Google Scholar 

  16. Kelley, D.: The Art of Reasoning: An Introduction to Logic and Critical Thinking. W.W. Norton & Company, New York (2013)

    Google Scholar 

  17. Lorenz, K., Lorenzen, P.: Dialogische Logik. WBG, Darmstadt (1978)

    MATH  Google Scholar 

  18. Lukasiewicz, J.: Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic, 2nd edn. Clarendon Press, Oxford (1957)

    MATH  Google Scholar 

  19. Mackenzie, J.D.: Question-begging in non-cumulative systems. J. Philos. Log. 8(1), 117–133 (1979)

    Article  MathSciNet  Google Scholar 

  20. Mendelson, E.: Introduction to Mathematical Logic, 6th edn. CRC Press, Boca Raton (2015)

    Google Scholar 

  21. Modgil, S., Prakken, H.: A general account of argumentation with preferences. Artif. Intell. J. 195, 361–397 (2013)

    Article  MathSciNet  Google Scholar 

  22. Oetsch, J., Tompits, H.: Gentzen-type refutation systems for three-valued logics with an application to disproving strong equivalence. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 254–259. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9_28

    Chapter  Google Scholar 

  23. Prakken, H.: An abstract framework for argumentation with structured arguments. Argum. Comput. 1(2), 93–124 (2010)

    Article  Google Scholar 

  24. Prakken, H., Wyner, A., Bench-Capon, T., Atkinson, K.: A formalization of argumentation schemes for legal case-based reasoning in ASPIC+. J. Log. Comput. 25(5), 1141–1166 (2015)

    Article  MathSciNet  Google Scholar 

  25. Singh, M.P.: Agent communication languages: rethinking the principles. Computer 31(12), 40–47 (1998)

    Article  Google Scholar 

  26. Skura, T.: Refutation systems in propositional logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 16, 2nd edn, pp. 115–157. Springer, Heidelberg (2011). https://doi.org/10.1007/978-94-007-0479-4_2

    Chapter  Google Scholar 

  27. Toulmin, S.: The Uses of Argument. Cambridge University Press, Cambridge (1958)

    Google Scholar 

  28. Verheij, B.: Evaluating arguments based on Toulmin’s scheme. Argumentation 19(3), 347–371 (2005)

    Article  Google Scholar 

  29. Walton, D., Gordon, T.F.: Critical questions in computational models of legal argument. In: Argumentation in Artificial Intelligence and Law Workshop, pp. 103–111. Wolf Legal Publishers (2005)

    Google Scholar 

  30. Walton, D., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning. State University of New York Press, Albany (1995)

    Google Scholar 

  31. Wigmore, J.H.: The Principles of Judicial Proof, 2nd edn. Little, Brown (1931)

    Google Scholar 

  32. Woods, J.: Is the theoretical unity of the fallacies possible? Informal Log. XVI, 77–85 (1994)

    Google Scholar 

  33. Wooldridge, M., McBurney, P., Parsons, S.: On the meta-logic of arguments. In: Parsons, S., Maudet, N., Moraitis, P., Rahwan, I. (eds.) ArgMAS 2005. LNCS (LNAI), vol. 4049, pp. 560–567. Springer, Heidelberg (2006). https://doi.org/10.1007/11794578_3

    Chapter  Google Scholar 

  34. Yuan, T., Manandhar, S., Kelly, T., Wells, S.: Automatically detecting fallacies in system safety arguments. In: Baldoni, M., et al. (eds.) IWEC/CMNA 2014-2015. LNCS (LNAI), vol. 9935, pp. 47–59. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46218-9_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Bisquert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bisquert, P., Dupin de Saint-Cyr, F., Besnard, P. (2019). Assessing Arguments with Schemes and Fallacies. In: Balduccini, M., Lierler, Y., Woltran, S. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2019. Lecture Notes in Computer Science(), vol 11481. Springer, Cham. https://doi.org/10.1007/978-3-030-20528-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20528-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20527-0

  • Online ISBN: 978-3-030-20528-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics