Nothing Special   »   [go: up one dir, main page]

Skip to main content

Gentzen-Type Refutation Systems for Three-Valued Logics with an Application to Disproving Strong Equivalence

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6645))

Abstract

While the purpose of conventional proof calculi is to axiomatise the set of valid sentences of a logic, refutation systems axiomatise the invalid sentences. Such systems are relevant not only for proof-theoretic reasons but also for realising deductive systems for nonmonotonic logics. We introduce Gentzen-type refutation systems for two basic three-valued logics and we discuss an application of one of these calculi for disproving strong equivalence between answer-set programs.

This work was partially supported by the Austrian Science Fund (FWF) under grant P21698. The authors would like to thank Valentin Goranko, Robert Sochacki, and Urszula Wybraniec-Skardowska for valuable support during the preparation of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Łukasiewicz, J.: Aristotle’s syllogistic from the standpoint of modern formal logic, 2nd edn. Clarendon Press, Oxford (1957)

    MATH  Google Scholar 

  2. Kreisel, G., Putnam, H.: Eine Unableitbarkeitsbeweismethode für den Intuitionistischen Aussagenkalkül. Archiv für Mathematische Logik und Grundlagenforschung 3, 74–78 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wójcicki, R.: Dual counterparts of consequence operations. Bulletin of the Section of Logic 2, 54–57 (1973)

    MathSciNet  Google Scholar 

  4. Tiomkin, M.: Proving unprovability. In: 3rd Annual Symposium on Logics in Computer Science, pp. 22–27. IEEE, Los Alamitos (1988)

    Google Scholar 

  5. Bonatti, P.A.: A Gentzen system for non-theorems. Technical Report CD-TR 93/52, Christian Doppler Labor für Expertensysteme, Technische Universität Wien (1993)

    Google Scholar 

  6. Goranko, V.: Refutation systems in modal logic. Studia Logica 53, 299–324 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Skura, T.: Refutations and proofs in S4. In: Proof Theory of Modal Logic, pp. 45–51. Kluwer, Dordrecht (1996)

    Chapter  Google Scholar 

  8. Skura, T.: A refutation theory. Logica Universalis 3, 293–302 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wybraniec-Skardowska, U.: On the notion and function of the rejection of propositions. Acta Universitatis Wratislaviensis Logika 23, 179–202 (2005)

    Google Scholar 

  10. Caferra, R., Peltier, N.: Accepting/rejecting propositions from accepted/rejected propositions: A unifying overview. International Journal of Intelligent Systems 23, 999–1020 (2008)

    Article  MATH  Google Scholar 

  11. Bonatti, P.A., Olivetti, N.: Sequent calculi for propositional nonmonotonic logics. ACM Transactions on Computational Logic 3, 226–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Egly, U., Tompits, H.: Proof-complexity results for nonmonotonic reasoning. ACM Transactions on Computational Logic 2, 340–387 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Avron, A.: Natural 3-valued logics - Characterization and proof theory. Journal of Symbolic Logic 56 (1), 276–294 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anzeiger Akademie der Wissenschaften Wien, mathematisch-naturwissenschaftliche Klasse 32, 65–66 (1932)

    MATH  Google Scholar 

  15. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2, 526–541 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bryll, G., Maduch, M.: Aksjomaty odrzucone dla wielowartościowych logik Łukasiewicza. In: Zeszyty Naukowe Wyższej Szkły Pedagogigicznej w Opolu, Matematyka VI, Logika i algebra, pp. 3–17 (1968)

    Google Scholar 

  17. Avron, A.: Classical Gentzen-type methods in propositional many-valued logics. In: 31st IEEE International Symposium on Multiple-Valued Logic, pp. 287–298. IEEE, Los Alamitos (2001)

    Chapter  Google Scholar 

  18. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oetsch, J., Tompits, H. (2011). Gentzen-Type Refutation Systems for Three-Valued Logics with an Application to Disproving Strong Equivalence. In: Delgrande, J.P., Faber, W. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2011. Lecture Notes in Computer Science(), vol 6645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20895-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20895-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20894-2

  • Online ISBN: 978-3-642-20895-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics