Abstract
Ensemble Deep Learning Architectures have demonstrated to improve the performance in comparison with the individual architectures composing the ensemble. In the current work, an ensemble of variants of Convolutional and Recurrent Neural Networks architectures are applied to the prediction of the \(^{222}Rn\) level at the Canfranc Underground Laboratory (Spain). To predict the low-level periods allows appropriately scheduling the maintenance operations in the experiments hosted in the laboratory. As a consequence of the application of Ensemble Deep Learning, an improvement of the forecasting capacity is stated. Furthermore, the learned lessons from this work can be extrapolated to other underground laboratories around the world.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bettini, A.: New underground laboratories: Europe, Asia and the Americas. Phys. Dark Universe 4(Suppl. C), 36–40 (2014). https://doi.org/10.1016/j.dark.2014.05.006. dARK TAUP2013
Chniti, G., Bakir, H., Zaher, H.: E-commerce time series forecasting using LSTM neural network and support vector regression. In: Proceedings of the International Conference on Big Data and Internet of Thing, BDIOT 2017, pp. 80–84. ACM, New York (2017). https://doi.org/10.1145/3175684.3175695
Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
Cleveland, R.B., Cleveland, W.S., McRae, J., Terpenning, I.: STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 3, 3–73 (1990)
Gamboa, J.C.B.: Deep learning for time-series analysis. CoRR abs/1701.01887 (2017). http://arxiv.org/abs/1701.01887
García, S., Fernández, A., Luengo, J., Herrera, F.: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput. 13(10), 959–977 (2009)
García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC 2005 special session on real parameter optimization. J. Heuristics 15(6), 617–644 (2009)
Garcia-Pedrero, A., Gomez-Gil, P.: Time series forecasting using recurrent neural networks and wavelet reconstructed signals. In: 2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP), pp. 169–173, February 2010. https://doi.org/10.1109/CONIELECOMP.2010.5440775
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Lago, J., Ridder, F.D., Schutter, B.D.: Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 221, 386–405 (2018). https://doi.org/10.1016/j.apenergy.2018.02.069, http://www.sciencedirect.com/science/article/pii/S030626191830196X
LeCun, Y.: Generalization and network design strategies. University of Toronto, Technical report (1989)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
Lipton, Z.C.: A critical review of recurrent neural networks for sequence learning. CoRR abs/1506.00019 (2015). http://arxiv.org/abs/1506.00019
Méndez-Jiménez, I., Cárdenas-Montes, M.: Modelling and forecasting of the \(^{222}{R}n\) radiation level time series at the Canfranc Underground Laboratory. In: Proceedings of Hybrid Artificial Intelligent Systems - 13th International Conference, HAIS 2018, Oviedo, Spain, 20–22 June 2018. Lecture Notes in Computer Science, vol. 10870, pp. 158–170. Springer (2018)
Méndez-Jiménez, I., Cárdenas-Montes, M.: Time series decomposition for improving the forecasting performance of convolutional neural networks. In: Proceedings of Advances in Artificial Intelligence - 18th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2018, Granada, Spain, 23–26 October 2018. Lecture Notes in Computer Science, vol. 11160, pp. 87–97. Springer (2018). https://doi.org/10.1007/978-3-030-00374-6_9
Qiu, X., Zhang, L., Ren, Y., Suganthan, P.N., Amaratunga, G.A.J.: Ensemble deep learning for regression and time series forecasting. In: 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning, CIEL 2014, Orlando, FL, USA, 9–12 December 2014, pp. 21–26 (2014). https://doi.org/10.1109/CIEL.2014.7015739
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/323533a0
Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. Trans. Sig. Proc. 45(11), 2673–2681 (1997). https://doi.org/10.1109/78.650093
Walid, A.: Recurrent neural network for forecasting time series with long memory pattern. J. Phys.: Conf. Ser. 824(1), 012038 (2017). http://stacks.iop.org/1742-6596/824/i=1/a=012038
Wang, H.Z., Li, G.Q., Wang, G.B., Peng, J.C., Jiang, H., Liu, Y.T.: Deep learning based ensemble approach for probabilistic wind power forecasting. Appl. Energy 188, 56–70 (2017). https://doi.org/10.1016/j.apenergy.2016.11.111. http://www.sciencedirect.com/science/article/pii/S0306261916317421
Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. CoRR abs/1611.06455 (2016). http://arxiv.org/abs/1611.06455
Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-channels deep convolutional neural networks. In: Li, F., Li, G., Hwang, S.W., Yao, B., Zhang, Z. (eds.) Web-Age Information Management, pp. 298–310. Springer, Cham (2014)
Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Exploiting multi-channels deep convolutional neural networks for multivariate time series classification. Front. Comput. Sci. 10(1), 96–112 (2016). https://doi.org/10.1007/s11704-015-4478-2
Acknowledgment
The research leading to these results has received funding by the Spanish Ministry of Economy and Competitiveness (MINECO) for funding support through the grant FPA2016-80994-C2-1-R, and “Unidad de Excelencia María de Maeztu”: CIEMAT - FÍSICA DE PARTÍCULAS through the grant MDM-2015-0509.
IMJ is co-funded in a 91.89 percent by the European Social Fund within the Youth Employment Operating Program, for the programming period 2014–2020, as well as Youth Employment Initiative (IEJ). IMJ is also co-funded through the Grants for the Promotion of Youth Employment and Implantation of Youth Guarantee in Research and Development and Innovation (I+D+i) from the MINECO.
The authors would like to thank Roberto Santorelli, Pablo García Abia and Vicente Pesudo for useful comments regarding the Physics related aspects of this work, and the Underground Laboratory of Canfranc by providing valuable feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Cárdenas-Montes, M., Méndez-Jiménez, I. (2020). Ensemble Deep Learning for Forecasting \(^{222}Rn\) Radiation Level at Canfranc Underground Laboratory. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J., Quintián, H., Corchado, E. (eds) 14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019). SOCO 2019. Advances in Intelligent Systems and Computing, vol 950. Springer, Cham. https://doi.org/10.1007/978-3-030-20055-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-20055-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20054-1
Online ISBN: 978-3-030-20055-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)