Nothing Special   »   [go: up one dir, main page]

Skip to main content

Near-Threshold Operation: Technology, Building Blocks and Architecture

  • Chapter
  • First Online:
Efficient Design of Variation-Resilient Ultra-Low Energy Digital Processors
  • 592 Accesses

Abstract

This chapter explores the key aspects of near-threshold operation. Technology constraints, building blocks and architectural aspects for operating circuits at ultra-low voltage are discussed. All the simulations and prototypes developed in Chap. 2–6 were acquired using a 40-nm CMOS technology. The transistor behaviour of said technology is the base of all the design considerations made further on. Section 2.1 lays out the ground work for this: transistor operating regions, device sizing, FO4 inverter performance and others are presented. These analyses enable an intuitive but surprisingly accurate insight in the microcontroller prototypes developed further in this work.

The logic gate topology used across all the prototypes presented in this work is the differential transmission gate. Section 2.2 looks at the different aspects influencing this choice and compares with other approaches. The VLSI design methodology motivates us to use sequential clock edge triggered pipelines. The flip-flop building block used in this work is briefly discussed in Sect. 2.3, together with some considerations on how it impacts the microcontroller prototypes.

Architectural properties of a digital system equally influence the system’s ultra-low voltage performance and minimum energy design target. Pipeline depth and circuit activity are important considerations. Their influence is discussed in Sect. 2.4. The impact of recent advancements in CMOS technology is briefly discussed in Sect. 2.5.

Every section of this chapter briefly sketches the application of the discussed considerations by looking forward to the prototypes of Chaps. 4 and 6. In doing so, the considerations made in this chapter and the conclusions presented in Sect. 2.6 become more tangible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From this point on simulations use the near-threshold optimized stacked nMOS inverter as shown in Fig. 2.20.

  2. 2.

    As discussed in Chap. 1, dynamic power is proportional to \({V_{\mathrm {{dd}^{2}}}}\), which is the main motivation for near-threshold operation.

  3. 3.

    The actual activity rate depends as much on the incoming data as on the amount of pipeline stages.

References

  1. Alarcón, L.P., Liu, T.T., Pierson, M.D., Rabaey, J.M.: Exploring very low-energy logic: a case study. J. Low Power Electron. 3, 223–233 (2007)

    Article  Google Scholar 

  2. Bol, D., Hocquet, C., Flandre, D., Legat, J.D.: The detrimental impact of negative Celsius temperature on ultra-low-voltage CMOS logic. In: 36th IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 522–525. IEEE, Piscataway (2010)

    Google Scholar 

  3. Bol, D., De Vos, J., Hocquet, C., Botman, F., Durvaux, F., Boyd, S., Flandre, D., Legat, J.D.: SleepWalker: a 25-MHz 0.4-V sub-mm2 7-uW/MHz microcontroller in 65-nm LP/GP CMOS for low-carbon wireless sensor nodes. IEEE J. Solid State Circuits 48(1), 20–32 (2013)

    Google Scholar 

  4. Dreslinski, R.G., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T.: Near-threshold computing: reclaiming Moore’s law through energy efficient integrated circuits. Proc. IEEE 98(2), 253–266 (2010)

    Article  Google Scholar 

  5. Jacquet, D., Hasbani, F., Flatresse, P., Wilson, R., Arnaud, F., Cesana, G., Di Gilio, T., Lecocq, C., Roy, T., Chhabra, A., Grover, C., Minez, O., Uginet, J., Durieu, G., Adobati, C., Casalotto, D., Nyer, F., Menut, P., Cathelin, A., Vongsavady, I., Magarshack, P.: A 3 GHz dual core processor ARM Cortex TM -A9 in 28 nm UTBB FD-SOI CMOS with ultra-wide voltage range and energy efficiency optimization. IEEE J. Solid State Circuits 49(4), 812–826 (2014)

    Article  Google Scholar 

  6. Jeon, D., Seok, M., Chakrabarti, C., Blaauw, D., Sylvester, D.: A super-pipelined energy efficient subthreshold 240 MS/s FFT core in 65 nm CMOS. IEEE J. Solid State Circuits 47(1), 23–34 (2012)

    Article  Google Scholar 

  7. Jin, W., Kim, S., He, W., Mao, Z., Seok, M.: In situ error detection techniques in ultralow voltage pipelines: analysis and optimizations. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25(3), 1032–1043 (2017)

    Article  Google Scholar 

  8. Kim, J.J., Roy, K.: Double gate-MOSFET subthreshold circuit for ultralow power applications. IEEE Trans. Electron Devices 51(9), 1468–1474 (2004)

    Article  Google Scholar 

  9. Kwong, J., Ramadass, Y.K., Verma, N., Chandrakasan, A.P.: A 65 nm sub-Vt microcontroller with integrated SRAM and switched capacitor DC-DC converter. IEEE J. Solid State Circuits 44(1), 115–126 (2009)

    Article  Google Scholar 

  10. Lim, W., Lee, I., Sylvester, D., Blaauw, D.: Batteryless sub-nW cortex-M0+ processor with dynamic leakage-suppression logic. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 1–3. IEEE, Piscataway (2015)

    Google Scholar 

  11. Luetkemeier, S., Jungeblut, T., Porrmann, M., Rueckert, U.: A 200mV 32b subthreshold processor with adaptive supply voltage control. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 484–486. IEEE, Piscataway (2012)

    Google Scholar 

  12. Mäkipää, J., Turnquist, M.J., Laulainen, E., Koskinen, L.: Timing-error detection design considerations in subthreshold: an 8-bit microprocessor in 65 nm CMOS. J. Low Power Electr. Appl. 2(2), 180–196 (2012)

    Article  Google Scholar 

  13. Markovic, D., Wang, C., Alarcon, L., Tsung-Te Liu, Rabaey, J.: Ultralow-power design in near-threshold region. Proc. IEEE 98(2), 237–252 (2010)

    Google Scholar 

  14. Myers, J., Savanth, A., Howard, D., Gaddh, R., Prabhat, P., Flynn, D.: An 80nW retention 11.7pJ/cycle active subthreshold ARM Cortex-M0+ subsystem in 65 nm CMOS for WSN applications. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 1–3. IEEE, Piscataway (2015)

    Google Scholar 

  15. Paul, S., Honkote, V., Kim, R.G., Majumder, T., Aseron, P.A., Grossnickle, V., Sankman, R., Mallik, D., Wang, T., Vangal, S., Tschanz, J.W., De, V.: A sub-cm3 energy-harvesting stacked wireless sensor node featuring a near-threshold voltage IA-32 microcontroller in 14-nm tri-gate CMOS for always-ON always-sensing applications. IEEE J. Solid State Circuits 52(4), 961–971 (2017)

    Article  Google Scholar 

  16. Pinckney, N., Shifren, L., Cline, B., Sinha, S., Jeloka, S., Dreslinski, R.G., Mudge, T., Sylvester, D., Blaauw, D.: Near-threshold computing in FinFET technologies: opportunities for improved voltage scalability. In: Proceedings of the 53rd Annual Design Automation Conference (DAC), pp. 1–6. IEEE, New York (2016)

    Google Scholar 

  17. Rabaey, J., Chandrakasan, A.P., Nikolic, B.: Digital Integrated Circuits: A Design Perspective, 2nd edn. Pearson Education Inc., Hoboken (2003)

    Google Scholar 

  18. Razavi, B.: Design of Analog CMOS Integrated Circuits, 2nd edn. McGraw Hill Education, New York (2017)

    Google Scholar 

  19. Reynders, N., Dehaene, W.: A 190mV supply, 10MHz, 90 nm CMOS, pipelined sub-threshold adder using variation-resilient circuit techniques. In: IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 113–116. IEEE, Piscataway (2011)

    Google Scholar 

  20. Reynders, N., Dehaene, W.: Variation-resilient building blocks for ultra-low-energy sub-threshold design. IEEE Trans. Circuits Syst. Express Briefs 59(12), 898–902 (2012)

    Article  Google Scholar 

  21. Reynders, N., Dehaene, W.: Variation-resilient sub-threshold circuit solutions for ultra-low-power digital signal processors with 10MHz clock frequency. In: 38th IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 474–477. IEEE, Piscataway (2012)

    Google Scholar 

  22. Reynders, N., Dehaene, W.: A 210mV 5MHz variation-resilient near-threshold JPEG encoder in 40 nm CMOS. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 456–457. IEEE, Piscataway (2014)

    Google Scholar 

  23. Reynders, N., Dehaene, W.: Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits. Springer, Leuven (2015)

    Book  Google Scholar 

  24. Reyserhove, H., Dehaene, W.: A 16.07pJ/cycle 31MHz fully differential transmission gate logic ARM Cortex M0 core in 40 nm CMOS. In: 42nd IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 257–260. IEEE, Piscataway (2016)

    Google Scholar 

  25. Reyserhove, H., Dehaene, W.: A differential transmission gate design flow for minimum energy sub-10-pJ/cycle ARM Cortex-M0 MCUs. IEEE J. Solid State Circuits 52(7), 1904–1914 (2017)

    Article  Google Scholar 

  26. Reyserhove, H., Reynders, N., Dehaene, W.: Ultra-low voltage datapath blocks in 28 nm UTBB FD-SOI. In: IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 49–52. IEEE, Piscataway (2014)

    Google Scholar 

  27. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003)

    Article  Google Scholar 

  28. Soeleman, H., Roy, K.: Ultra-low power digital subthreshold logic circuits. In: Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), pp. 94–96. ACM Press, New York (1999)

    Google Scholar 

  29. Tae-Hyoung Kim, Keane, J., Hanyong Eom, Kim, C.: Utilizing reverse short-channel effect for optimal subthreshold circuit design. IEEE Trans. Very Large Scale Integr. VLSI Syst. 15(7), 821–829 (2007)

    Google Scholar 

  30. Tsividis, Y., McAndrew, C.: Operation and Modeling of the MOS Transistor, 3rd edn. Oxford University Press, London (2011)

    Google Scholar 

  31. Wang, A., Calhoun, B.H., Chandrakasan, A.P.: Sub-threshold Design for Ultra Low Power Systems. Springer, New York (2006)

    Google Scholar 

  32. Weste, N., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective, 4th edn. Addison-Wesley Publishing, Boston (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reyserhove, H., Dehaene, W. (2019). Near-Threshold Operation: Technology, Building Blocks and Architecture. In: Efficient Design of Variation-Resilient Ultra-Low Energy Digital Processors. Springer, Cham. https://doi.org/10.1007/978-3-030-12485-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12485-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12484-7

  • Online ISBN: 978-3-030-12485-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics