Abstract
This work tries to combine the described challenges that energy-efficient microcontrollers face in sub-micron CMOS technologies. An ultra-low energy consumption with fast enough performance while being variation-resilient is the triple combination this work targets. Ideally, this system is realized using an efficient design process that helps the designer to improve the system as much as possible. To accomplish this, variation-resilient building blocks and design techniques to operate at ultra-low voltage are presented. This results in the efficient implementation of several microcontroller prototypes fabricated in 40 nm CMOS technology that achieve state-of-the-art performance and ultra-low energy consumption. This chapter gives a short overview of the main challenges faced in this work, and thereby introduces the remaining chapters. First, the concept of minimum energy operation is introduced. It is the main target for everything developed in this work. Second, CMOS technology and the problems it faces when operated for minimum energy are discussed. Third, efficient design through a standard cell based very-large-scale-integration (VLSI) design flow is elaborated on. Variations and their influence are the fourth topic. Fifth, current and possible future applications for microcontrollers and other systems that benefit from minimum energy operation and variation-resilient design are discussed. These topics set out the main challenges this work faces. Finally, the goals this work aims for are defined.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ashouei, M., Hulzink, J., Konijnenburg, M., Zhou, J., Duarte, F., Breeschoten, A., Huisken, J., Stuyt, J., de Groot, H., Barat, F., David, J., Van Ginderdeuren, J.: A voltage-scalable biomedical signal processor running ECG using 13 pJ/cycle at 1 MHz and 0.4 V. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 332–334. IEEE, New York (2011)
Bostian, S.: Rachet up reliability for mission-critical applications: Intel® instruction replay technology. White Paper, 48 (2013)
Bowman, K.A., Tschanz, J.W., Kim, N.S., Lee, J.C., Wilkerson, C.B., Lu, S.L.L., Karnik, T., De, V.K.: Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance. IEEE J. Solid-State Circ. 44(1), 49–63 (2009)
Bull, D., Das, S., Shivashankar, K., Dasika, G.S., Flautner, K., Blaauw, D.: A power-efficient 32 bit ARM processor using timing-error detection and correction for transient-error tolerance and adaptation to PVT variation. IEEE J. Solid-State Circ. 46(1), 18–31 (2011)
Das, S., Tokunaga, C., Pant, S., Ma, W.H., Kalaiselvan, S., Lai, K., Bull, D.M., Blaauw, D.T.: RazorII: in situ error detection and correction for PVT and SER tolerance. IEEE J. Solid-State Circ. 44(1), 32–48 (2009)
Dreslinski, R.G., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T.: Near-threshold computing: reclaiming Moore’s law through energy efficient integrated circuits. Proc. IEEE 98(2), 253–266 (2010)
Fojtik, M., Fick, D., Kim, Y., Pinckney, N., Harris, D.M., Blaauw, D., Sylvester, D.: Bubble Razor: eliminating timing margins in an ARM cortex-M3 processor in 45 nm CMOS using architecturally independent error detection and correction. IEEE J. Solid-State Circuits 48(1), 66–81 (2013)
IC-Insights: MCU Market Forecast (2016). http://www.icinsights.com/news/bulletins/MCU-Market-Forecast-To-Reach-Record-High-Revenues-Through-2020/
Jayakumar, H., Lee, K., Lee, W.S., Raha, A., Kim, Y., Raghunathan, V.: Powering the internet of things. In: Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), pp. 375–380. ACM Press, New York (2014)
Kim, S., Seok, M.: Variation-tolerant, ultra-low-voltage microprocessor with a low-overhead, within-a-cycle in-situ timing-error detection and correction technique. IEEE J. Solid-State Circ. 50(6), 1478–1490 (2015)
Kim, H., Kim, S., Van Helleputte, N., Artes, A., Konijnenburg, M., Huisken, J., Van Hoof, C., Yazicioglu, R.F.: A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans. Biomed. Circ. Syst. 8(2), 257–267 (2014)
Kwon, I., Kim, S., Fick, D., Kim, M., Chen, Y.P., Sylvester, D.: Razor-Lite: a light-weight register for error detection by observing virtual supply rails. IEEE J. Solid-State Circ. 49(9), 2054–2066 (2014)
Lallement, G., Abouzeid, F., Cochet, M., Daveau, J.M., Roche, P., Autran, J.L.: A 2.7 pJ/cycle 16 MHz, 0.7 μW Deep Sleep Power ARM Cortex-M0+ Core SoC in 28 nm FD-SOI. IEEE J. Solid-State Circ. 53, 1–13 (2018)
Lim, W., Lee, I., Sylvester, D., Blaauw, D.: Batteryless sub-nW Cortex-M0+ processor with dynamic leakage-suppression logic. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 1–3. IEEE, New York (2015)
Luetkemeier, S., Jungeblut, T., Porrmann, M., Rueckert, U.: A 200 mV 32b subthreshold processor with adaptive supply voltage control. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 484–486. IEEE, New York (2012)
Markovic, D., Wang, C., Alarcon, L., Tsung-Te Liu, Rabaey, J.: Ultralow-power design in near-threshold region. Proc. IEEE 98(2), 237–252 (2010)
Myers, J., Savanth, A., Gaddh, R., Howard, D., Prabhat, P., Flynn, D.: A subthreshold ARM Cortex-M0+ Subsystem in 65 nm CMOS for WSN applications with 14 power domains, 10T SRAM, and integrated voltage regulator. IEEE J. Solid-State Circ. 51(1), 31–44 (2016)
Paul, S., Honkote, V., Kim, R.G., Majumder, T., Aseron, P.A., Grossnickle, V., Sankman, R., Mallik, D., Wang, T., Vangal, S., Tschanz, J.W., De, V.: A sub-cm3 energy-harvesting stacked wireless sensor node featuring a near-threshold voltage IA-32 microcontroller in 14-nm tri-gate CMOS for always-ON always-sensing applications. IEEE J. Solid-State Circ. 52(4), 961–971 (2017)
Rabaey, J., Chandrakasan, A.P., Nikolic, B.: Digital Integrated Circuits: A Design Perspective, 2nd edn. Pearson Education Inc., London (2003)
Reynders, N., Dehaene, W.: A 190 mV supply, 10 MHz, 90 nm CMOS, pipelined sub-threshold adder using variation-resilient circuit techniques. In: IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 113–116. IEEE, New York (2011)
Reynders, N., Dehaene, W.: Variation-resilient building blocks for ultra-low-energy sub-threshold design. IEEE Trans. Circ. Syst. II Express Briefs 59(12), 898–902 (2012)
Reynders, N., Dehaene, W.: Variation-resilient sub-threshold circuit solutions for ultra-low-power Digital Signal Processors with 10 MHz clock frequency. In: 38th IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 474–477. IEEE, New York (2012)
Reynders, N., Dehaene, W.: A 210 mV 5 MHz variation-resilient near-threshold JPEG encoder in 40 nm CMOS. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 456–457. IEEE, New York (2014)
Reynders, N., Dehaene, W.: Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits (Springer, Leuven, 2015)
Reyserhove, H., Dehaene, W.: A 16.07 pJ/cycle 31MHz fully differential transmission gate logic ARM Cortex M0 core in 40 nm CMOS. In: 42nd IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 257–260. IEEE, New York (2016)
Reyserhove, H., Dehaene, W.: A differential transmission gate design flow for minimum energy sub-10-pJ/cycle ARM cortex-M0 MCUs. IEEE J. Solid-State Circ. 52(7), 1904–1914 (2017)
Reyserhove, H., Dehaene, W.: Design margin elimination in a near-threshold timing error masking-aware 32-bit ARM Cortex M0 in 40 nm CMOS. In: 43rd IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 155–158. IEEE, New York (2017)
Reyserhove, H., Dehaene, W.: Design margin elimination through robust timing error detection at ultra-low voltage. In: IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), pp. 1–3. IEEE, New York (2017)
Reyserhove, H., Dehaene, W.: Margin elimination through timing error detection in a near-threshold enabled 32-bit microcontroller in 40-nm CMOS. IEEE J. Solid-State Circ. 53, 2101–2113 (2018)
Reyserhove, H., Reynders, N., Dehaene, W.: Ultra-low voltage datapath blocks in 28nm UTBB FD-SOI. In: IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 49–52. IEEE, New York (2014)
Wang, A., Calhoun, B.H., Chandrakasan, A.P.: Sub-Threshold Design for Ultra Low Power Systems. Springer, New York (2006)
Warneke, B., Pister, K.: An ultra-low energy microcontroller for Smart Dust wireless sensor networks. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 316–317. IEEE, New York (2004)
Weste, N., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective, 4th edn. Addison-Wesley Publishing, Boston (2010)
Whatmough, P.N., Das, S., Bull, D.M.: A low-power 1-GHz razor FIR accelerator with time-borrow tracking pipeline and approximate error correction in 65-nm CMOS. IEEE J. Solid-State Circ. 49(1), 84–94 (2014)
Zhang, Y., Khayatzadeh, M., Yang, K., Saligane, M., Pinckney, N., Alioto, M., Blaauw, D., Sylvester, D.: iRazor: current-based error detection and correction scheme for PVT variation in 40-nm ARM Cortex-R4 processor. IEEE J. Solid-State Circ. 53(2), 619–631 (2018)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Reyserhove, H., Dehaene, W. (2019). Energy-Efficient Processors: Challenges and Solutions. In: Efficient Design of Variation-Resilient Ultra-Low Energy Digital Processors. Springer, Cham. https://doi.org/10.1007/978-3-030-12485-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-12485-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12484-7
Online ISBN: 978-3-030-12485-4
eBook Packages: EngineeringEngineering (R0)