Nothing Special   »   [go: up one dir, main page]

Skip to main content
  • 572 Accesses

Abstract

This work tries to combine the described challenges that energy-efficient microcontrollers face in sub-micron CMOS technologies. An ultra-low energy consumption with fast enough performance while being variation-resilient is the triple combination this work targets. Ideally, this system is realized using an efficient design process that helps the designer to improve the system as much as possible. To accomplish this, variation-resilient building blocks and design techniques to operate at ultra-low voltage are presented. This results in the efficient implementation of several microcontroller prototypes fabricated in 40 nm CMOS technology that achieve state-of-the-art performance and ultra-low energy consumption. This chapter gives a short overview of the main challenges faced in this work, and thereby introduces the remaining chapters. First, the concept of minimum energy operation is introduced. It is the main target for everything developed in this work. Second, CMOS technology and the problems it faces when operated for minimum energy are discussed. Third, efficient design through a standard cell based very-large-scale-integration (VLSI) design flow is elaborated on. Variations and their influence are the fourth topic. Fifth, current and possible future applications for microcontrollers and other systems that benefit from minimum energy operation and variation-resilient design are discussed. These topics set out the main challenges this work faces. Finally, the goals this work aims for are defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashouei, M., Hulzink, J., Konijnenburg, M., Zhou, J., Duarte, F., Breeschoten, A., Huisken, J., Stuyt, J., de Groot, H., Barat, F., David, J., Van Ginderdeuren, J.: A voltage-scalable biomedical signal processor running ECG using 13 pJ/cycle at 1 MHz and 0.4 V. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 332–334. IEEE, New York (2011)

    Google Scholar 

  2. Bostian, S.: Rachet up reliability for mission-critical applications: Intel® instruction replay technology. White Paper, 48 (2013)

    Google Scholar 

  3. Bowman, K.A., Tschanz, J.W., Kim, N.S., Lee, J.C., Wilkerson, C.B., Lu, S.L.L., Karnik, T., De, V.K.: Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance. IEEE J. Solid-State Circ. 44(1), 49–63 (2009)

    Article  Google Scholar 

  4. Bull, D., Das, S., Shivashankar, K., Dasika, G.S., Flautner, K., Blaauw, D.: A power-efficient 32 bit ARM processor using timing-error detection and correction for transient-error tolerance and adaptation to PVT variation. IEEE J. Solid-State Circ. 46(1), 18–31 (2011)

    Article  Google Scholar 

  5. Das, S., Tokunaga, C., Pant, S., Ma, W.H., Kalaiselvan, S., Lai, K., Bull, D.M., Blaauw, D.T.: RazorII: in situ error detection and correction for PVT and SER tolerance. IEEE J. Solid-State Circ. 44(1), 32–48 (2009)

    Article  Google Scholar 

  6. Dreslinski, R.G., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T.: Near-threshold computing: reclaiming Moore’s law through energy efficient integrated circuits. Proc. IEEE 98(2), 253–266 (2010)

    Article  Google Scholar 

  7. Fojtik, M., Fick, D., Kim, Y., Pinckney, N., Harris, D.M., Blaauw, D., Sylvester, D.: Bubble Razor: eliminating timing margins in an ARM cortex-M3 processor in 45 nm CMOS using architecturally independent error detection and correction. IEEE J. Solid-State Circuits 48(1), 66–81 (2013)

    Article  Google Scholar 

  8. IC-Insights: MCU Market Forecast (2016). http://www.icinsights.com/news/bulletins/MCU-Market-Forecast-To-Reach-Record-High-Revenues-Through-2020/

  9. Jayakumar, H., Lee, K., Lee, W.S., Raha, A., Kim, Y., Raghunathan, V.: Powering the internet of things. In: Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), pp. 375–380. ACM Press, New York (2014)

    Google Scholar 

  10. Kim, S., Seok, M.: Variation-tolerant, ultra-low-voltage microprocessor with a low-overhead, within-a-cycle in-situ timing-error detection and correction technique. IEEE J. Solid-State Circ. 50(6), 1478–1490 (2015)

    Article  Google Scholar 

  11. Kim, H., Kim, S., Van Helleputte, N., Artes, A., Konijnenburg, M., Huisken, J., Van Hoof, C., Yazicioglu, R.F.: A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans. Biomed. Circ. Syst. 8(2), 257–267 (2014)

    Article  Google Scholar 

  12. Kwon, I., Kim, S., Fick, D., Kim, M., Chen, Y.P., Sylvester, D.: Razor-Lite: a light-weight register for error detection by observing virtual supply rails. IEEE J. Solid-State Circ. 49(9), 2054–2066 (2014)

    Article  Google Scholar 

  13. Lallement, G., Abouzeid, F., Cochet, M., Daveau, J.M., Roche, P., Autran, J.L.: A 2.7 pJ/cycle 16 MHz, 0.7 μW Deep Sleep Power ARM Cortex-M0+ Core SoC in 28 nm FD-SOI. IEEE J. Solid-State Circ. 53, 1–13 (2018)

    Google Scholar 

  14. Lim, W., Lee, I., Sylvester, D., Blaauw, D.: Batteryless sub-nW Cortex-M0+ processor with dynamic leakage-suppression logic. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 1–3. IEEE, New York (2015)

    Google Scholar 

  15. Luetkemeier, S., Jungeblut, T., Porrmann, M., Rueckert, U.: A 200 mV 32b subthreshold processor with adaptive supply voltage control. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 484–486. IEEE, New York (2012)

    Google Scholar 

  16. Markovic, D., Wang, C., Alarcon, L., Tsung-Te Liu, Rabaey, J.: Ultralow-power design in near-threshold region. Proc. IEEE 98(2), 237–252 (2010)

    Google Scholar 

  17. Myers, J., Savanth, A., Gaddh, R., Howard, D., Prabhat, P., Flynn, D.: A subthreshold ARM Cortex-M0+ Subsystem in 65 nm CMOS for WSN applications with 14 power domains, 10T SRAM, and integrated voltage regulator. IEEE J. Solid-State Circ. 51(1), 31–44 (2016)

    Article  Google Scholar 

  18. Paul, S., Honkote, V., Kim, R.G., Majumder, T., Aseron, P.A., Grossnickle, V., Sankman, R., Mallik, D., Wang, T., Vangal, S., Tschanz, J.W., De, V.: A sub-cm3 energy-harvesting stacked wireless sensor node featuring a near-threshold voltage IA-32 microcontroller in 14-nm tri-gate CMOS for always-ON always-sensing applications. IEEE J. Solid-State Circ. 52(4), 961–971 (2017)

    Article  Google Scholar 

  19. Rabaey, J., Chandrakasan, A.P., Nikolic, B.: Digital Integrated Circuits: A Design Perspective, 2nd edn. Pearson Education Inc., London (2003)

    Google Scholar 

  20. Reynders, N., Dehaene, W.: A 190 mV supply, 10 MHz, 90 nm CMOS, pipelined sub-threshold adder using variation-resilient circuit techniques. In: IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 113–116. IEEE, New York (2011)

    Google Scholar 

  21. Reynders, N., Dehaene, W.: Variation-resilient building blocks for ultra-low-energy sub-threshold design. IEEE Trans. Circ. Syst. II Express Briefs 59(12), 898–902 (2012)

    Google Scholar 

  22. Reynders, N., Dehaene, W.: Variation-resilient sub-threshold circuit solutions for ultra-low-power Digital Signal Processors with 10 MHz clock frequency. In: 38th IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 474–477. IEEE, New York (2012)

    Google Scholar 

  23. Reynders, N., Dehaene, W.: A 210 mV 5 MHz variation-resilient near-threshold JPEG encoder in 40 nm CMOS. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 456–457. IEEE, New York (2014)

    Google Scholar 

  24. Reynders, N., Dehaene, W.: Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits (Springer, Leuven, 2015)

    Book  Google Scholar 

  25. Reyserhove, H., Dehaene, W.: A 16.07 pJ/cycle 31MHz fully differential transmission gate logic ARM Cortex M0 core in 40 nm CMOS. In: 42nd IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 257–260. IEEE, New York (2016)

    Google Scholar 

  26. Reyserhove, H., Dehaene, W.: A differential transmission gate design flow for minimum energy sub-10-pJ/cycle ARM cortex-M0 MCUs. IEEE J. Solid-State Circ. 52(7), 1904–1914 (2017)

    Article  Google Scholar 

  27. Reyserhove, H., Dehaene, W.: Design margin elimination in a near-threshold timing error masking-aware 32-bit ARM Cortex M0 in 40 nm CMOS. In: 43rd IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 155–158. IEEE, New York (2017)

    Google Scholar 

  28. Reyserhove, H., Dehaene, W.: Design margin elimination through robust timing error detection at ultra-low voltage. In: IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), pp. 1–3. IEEE, New York (2017)

    Google Scholar 

  29. Reyserhove, H., Dehaene, W.: Margin elimination through timing error detection in a near-threshold enabled 32-bit microcontroller in 40-nm CMOS. IEEE J. Solid-State Circ. 53, 2101–2113 (2018)

    Article  Google Scholar 

  30. Reyserhove, H., Reynders, N., Dehaene, W.: Ultra-low voltage datapath blocks in 28nm UTBB FD-SOI. In: IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 49–52. IEEE, New York (2014)

    Google Scholar 

  31. Wang, A., Calhoun, B.H., Chandrakasan, A.P.: Sub-Threshold Design for Ultra Low Power Systems. Springer, New York (2006)

    Google Scholar 

  32. Warneke, B., Pister, K.: An ultra-low energy microcontroller for Smart Dust wireless sensor networks. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 316–317. IEEE, New York (2004)

    Google Scholar 

  33. Weste, N., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective, 4th edn. Addison-Wesley Publishing, Boston (2010)

    Google Scholar 

  34. Whatmough, P.N., Das, S., Bull, D.M.: A low-power 1-GHz razor FIR accelerator with time-borrow tracking pipeline and approximate error correction in 65-nm CMOS. IEEE J. Solid-State Circ. 49(1), 84–94 (2014)

    Article  Google Scholar 

  35. Zhang, Y., Khayatzadeh, M., Yang, K., Saligane, M., Pinckney, N., Alioto, M., Blaauw, D., Sylvester, D.: iRazor: current-based error detection and correction scheme for PVT variation in 40-nm ARM Cortex-R4 processor. IEEE J. Solid-State Circ. 53(2), 619–631 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reyserhove, H., Dehaene, W. (2019). Energy-Efficient Processors: Challenges and Solutions. In: Efficient Design of Variation-Resilient Ultra-Low Energy Digital Processors. Springer, Cham. https://doi.org/10.1007/978-3-030-12485-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12485-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12484-7

  • Online ISBN: 978-3-030-12485-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics