Abstract
Computational Neuroethology comprises a wide variety of devices, computational tools and techniques used in studies aiming to understand the neural substrate of the observable behavior. In this short review we focus on the description of available computational tools in a landscape of resources that is steadily growing as the scientific community recognizes this Computational Neuroethology as one of the frontiers of scientific endeavor. We comment on the biological basis and some examples of studies reported in the literature before providing a description and taxonomy of resources and tools.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
References
Aguzzi, J., Costa, C., Fujiwara, Y., Iwase, R., Ramirez-Llorda, E., Menesatti, P.: A novel morphometry-based protocol of automated video-image analysis for species recognition and activity rhythms monitoring in deep-sea fauna. Sensors 9(11), 8438–8455 (2009)
Akkaya, B., Tabar, Y.R., Gharbalchi, F., Ulusoy, I., Halici, U.: Tracking mice face in video. In: 20th National Biomedical Engineering Meeting (BIYOMUT), pp. 1–4, November 2016
Akkaya, İ.B., Halici, U.: Mouse face tracking using convolutional neural networks. IET Comput. Vis. 12(2), 153–161 (2018)
Anderson, D.J., Adolphs, R.: A framework for studying emotions across species. Cell 157(1), 187–200 (2014)
Andrienko, G., et al.: Visual analysis of pressure in football. Data Min. Knowl. Discov. 31(6), 1793–1839 (2017)
Arbib, M.A.: Rana computatrix to human language: towards a computational neuroethology of language evolution. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 361(1811), 2345–2379 (2003)
Bains, R.S., et al.: Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. J. Neurosci. Methods 300, 37–47 (2018). Measuring Behaviour 2016
Benice, T.S., Raber, J.: Object recognition analysis in mice using nose-point digital video tracking. J. Neurosci. Methods 168(2), 422–430 (2008)
Bolles, R.C., Fanselow, M.S.: A perceptual-defensive-recuperative model of fear and pain. Behav. Brain Sci. 3(2), 291–301 (1980)
Brown, A.E.X., Yemini, E.I., Grundy, L.J., Jucikas, T., Schafer, W.R.: A dictionary of behavioral motifs reveals clusters of genes affecting caenorhabditis elegans locomotion. Proc. Natl. Acad. Sci. 110(2), 791–796 (2013)
Burgos-Artizzu, X.P., Dollár, P., Lin, D., Anderson, D.J., Perona, P.: Social behavior recognition in continuous video. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1322–1329, June 2012
Carreno, M.I., et al.: First approach to the analysis of spontaneous activity of mice based on permutation entropy. In: 2015 4th International Work Conference on Bioinspired Intelligence (IWOBI), pp. 197–204, June 2015
Cha, B.J., Bae, B.S., Cho, S.K., Oh, J.K.: A simple method to quantify fish behavior by forming time-lapse images. Aquac. Eng. 51, 15–20 (2012)
Cho, H.-J., et al.: Newly developed method for mouse olfactory behavior tests using an automatic video tracking system. Auris Nasus Larynx 45(1), 103–110 (2018)
Conklin, E.E., Lee, K.L., Schlabach, S.A., Woods, I.G.: Videohacking: automated tracking and quantification of locomotor behavior with open source software and off-the-shelf video equipment. J. Undergrad. Neurosci. Educ. 13(3), A120–A125 (2015). PMID: 26240518
Cronin, C.J., Feng, Z., Schafer, W.R.: Automated Imaging of C. elegans Behavior, pp. 241–251. Humana Press, Totowa (2006)
Dankert, H., Wang, L., Hoopfer, E.D., Anderson, D.J., Perona, P.: Automated monitoring and analysis of social behavior in drosophila. Nat. Methods 6, 297 (2009)
Dell, A.I., et al.: Automated image-based tracking and its application in ecology. Trends Ecol. Evol. 29(7), 417–428 (2014)
Desland, F.A., Afzal, A., Warraich, Z., Mocco, J.: Manual versus automated rodent behavioral assessment: comparing efficacy and ease of Bederson and Garcia neurological deficit scores to an open field video-tracking system. J. Cent. Nerv. Syst. Dis. 6, 7–14 (2014). PMID: 24526841
Eyjolfsdottir, Eyrun, et al.: Detecting social actions of fruit flies. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 772–787. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_50
Fanselow, M.S., Lester, L.S.: A functional behavioristic approach to aversively motivated behavior: predatory imminence as a determinant of the topography of defensive behavior. In: Bolles, R.C., Beecher, M.D. (eds.) Evol. Learn., pp. 185–212. Lawrence Erlbaum Associates Inc., Hillsdale (1988)
Fontaine, E., et al.: Automated visual tracking for studying the ontogeny of zebrafish swimming. J. Exp. Biol. 211(8), 1305–1316 (2008)
Manuel Graña for CybSPEED: On The Proposed Cybspeed Project Experimental Research Protocols. Zenodo (2018). https://doi.org/10.5281/zenodo.1405505. Accessed Aug 2018
Fournely, M., Petit, Y., Wagnac, É., Laurin, J., Callot, V., Arnoux, P.-J.: High-speed video analysis improves the accuracy of spinal cord compression measurement in a mouse contusion model. J. Neurosci. Methods 293, 1–5 (2018)
Fröhlich, H., Claes, K., De Wolf, C., Van Damme, X., Michel, A.: A machine learning approach to automated gait analysis for the Noldus catwalk system. IEEE Trans. Biomed. Eng. 65(5), 1133–1139 (2018)
Hong, W., Kim, D.-W., Anderson, D.J.: Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158(6), 1348–1361 (2014)
Idei, H., Murata, S., Chen, Y., Yamashita, Y., Tani, J., Ogata, T.: Reduced behavioral flexibility by aberrant sensory precision in autism spectrum disorder: a neurorobotics experiment. In: 2017 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pp. 271–276, September 2017
Jhuang, H., et al.: Automated home-cage behavioural phenotyping of mice. Nat. Commun. 1, 68 (2010)
Kabra, M., Robie, A.A., Rivera-Alba, M., Branson, S., Branson, K.: JAABA: interactive machine learning for automatic annotation of animal behavior. Nat. Methods 10, 64 (2012)
Kearns, W.D., Fozard, J.L., Nams, V.O.: Movement path tortuosity in free ambulation: relationships to age and brain disease. IEEE J. Biomed. Health Inform. 21(2), 539–548 (2017)
Kelso, J.A.S., Dumas, G., Tognoli, E.: Outline of a general theory of behavior and brain coordination. Neural Netw. 37, 120–131 (2013). Twenty-fifth Anniversay Commemorative Issue
Cario, C.L., Farrell, T.C., Milanese, C., Burton, E.A.: Automated measurement of zebrash larval movement. J. Physiol. 589(15), 3703–3708 (2011)
(Sam) Ma, Z.: Towards computational models of animal cognition, an introduction for computer scientists. Cognit. Syst. Res. 33, 42–69 (2015)
Menzel, R., Greggers, U.: The memory structure of navigation in honeybees. J. Comp. Physiol. A 201(6), 547–561 (2015)
Mobbs, D.: Foraging under competition: the neural basis of input-matching in humans. J. Neurosci. 33(23), 9866–9872 (2013)
Mobbs, D., Kim, J.J.: Neuroethological studies of fear, anxiety, and risky decision-making in rodents and humans. Curr. Opin. Behav. Sci. 5, 8–15 (2015). Neuroeconomics
Morrow-Tesch, J., Dailey, J.W., Jiang, H.: A video data base system for studying animal behavior. J. Anim. Sci. 76(10), 2605–2608 (1998)
Muto, A., Lal, P., Ailani, D., Abe, G., Itoh, M., Kawakami, K.: Activation of the hypothalamic feeding centre upon visual prey detection. Nat. Commun. 8, 15029 (2017)
Obdrzálek, S.: Accuracy and robustness of kinect pose estimation in the context of coaching of elderly population. In: Conference Proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, pp. 1188–1193 (2012)
Ohayon, S., Avni, O., Taylor, A.L., Perona, P., Roian, S.E.: Automated multi-day tracking of marked mice for the analysis of social behaviour. J. Neurosci. Methods 219(1), 10–19 (2013)
Papadakis, V.M., Papadakis, I.E., Lamprianidou, F., Glaropoulos, A., Kentouri, M.: A computer-vision system and methodology for the analysis of fish behavior. Aquac. Eng. 46, 53–59 (2012)
Pérez-Escudero, A., Vicente-Page, J., Hinz, R.C., Arganda, S., de Polavieja, G.G.: idtracker: tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 11, 743 (2014)
Pham, J., Cabrera, S.M., Sanchis-Segura, C., Wood, M.A.: Automated scoring of fear-related behavior using ethovision software. J. Neurosci. Methods 178(2), 323–326 (2009)
Riley, J.R.: Tracking bees with harmonic radar. Nature 379, 29 (1996)
Saberioon, M.M., Cisar, P.: Automated multiple fish tracking in three-dimension using a structured light sensor. Comput. Electron. Agric. 121, 215–221 (2016)
Shotton, J., et al.: Real-time human pose recognition in parts from single depth images. In: Cipolla, R., Battiato, S., Farinella, G. (eds.) Machine Learning for Computer Vision. Studies in Computational Intelligence, vol. 411, pp. 119–135. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-28661-2_5
Sminchisescu, C., Kanaujia, A., Li, Z., Metaxas, D.: Conditional models for contextual human motion recognition. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 1, vol. 2, pp. 1808–1815, October 2005
Squire, L.R.: Encyclopedia of Neuroscience. In: Encyclopedia of Neuroscience, vol. 3. Elsevier/Academic Press (2009)
Stafstrom, J.A., Michalik, P., Hebets, E.A.: Sensory system plasticity in a visually specialized, nocturnal spider. Sci. Rep. 7, 46627 (2017)
Stewart, A.M.: A novel 3D method of locomotor analysis in adult zebrafish. J. Neurosci. Methods 255, 66–74 (2015)
Stone, E.E., Skubic, M.: Unobtrusive, continuous, in-home gait measurement using the microsoft kinect. IEEE Trans. Biomed. Eng. 60(10), 2925–2932 (2013)
Tang, B.: An in vivo study of hypoxia-inducible factor-1\(\alpha \) signaling in ginsenoside Rg1-mediated brain repair after hypoxia/ischemia brain injury. Pediatr. Res. 81, 120 (2016)
Todd, P.A.C., McCue, H.V., Haynes, L.P., Barclay, J.W., Burgoyne, R.D.: Interaction of ARF-1.1 and neuronal calcium sensor-1 in the control of the temperature-dependency of locomotion in caenorhabditis elegans. Sci. Rep. 6, 30023 (2016)
Tsai, H.-Y., Huang, Y.-W.: Image tracking study on courtship behavior of drosophila. PLoS One 7(4), 1–8 (2012)
Urgen, B., Plank, M., Ishiguro, H., Poizner, H., Saygin, A.: EEG theta and Mu oscillations during perception of human and robot actions. Front. Neurorobotics 7, 19 (2013)
Wang, Y.-N.: Behavioural screening of zebrafish using neuroactive traditional Chinese medicine prescriptions and biological targets. Sci. Rep. 4, 5311 (2014)
Wario, F., Wild, B., Couvillon, M., Rojas, R., Landgraf, T.: Automatic methods for long-term tracking and the detection and decoding of communication dances in honeybees. Front. Ecol. Evol. 3, 103 (2015)
Zhao, J., et al.: Modified motion influence map and recurrent neural network-based monitoring of the local unusual behaviors for fish school in intensive aquaculture. Aquaculture 493, 165–175 (2018)
Zhu, L., Weng, W.: Catadioptric stereo-vision system for the real-time monitoring of 3D behavior in aquatic animals. Physiol. Behav. 91(1), 106–119 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Graña, M., de Lope Asiain, J. (2019). A Short Review of Some Aspects of Computational Neuroethology. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-19591-5_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19590-8
Online ISBN: 978-3-030-19591-5
eBook Packages: Computer ScienceComputer Science (R0)