Abstract
The analytical approach to navigation studies aims to identify elementary sensory motor processes that guide an animal to a remote site. This approach will be used here to characterize components of navigation in a flying insect, the honeybee. However, navigation studies need to go beyond an analysis of behavioral routines to come up with a synthesis. We will defend the concept of an active memory structure guiding navigation in bees that is best described as a mental or cognitive map. In our opinion, spatial/temporal relations of landmarks are stored in a mental map in such a way that behavioral routines such as expectation and planning, as indicated by shortcutting, are possible. We view the mental map of animals including the honeybee as an “action memory of spatial relations” rather than as a sensory representation as we humans experience it by introspection. Two components characterize the mental map, the relational representation of landmarks and the meaning of locations to the animal. As yet, there is little data to suggest that bees assign meaning to the experienced locations. To explore this possibility, further studies will be needed, whereby honeybees provide a unique model to address this question.
Similar content being viewed by others
References
Barnett SA (1958) Exploratory behaviour. Brit J Psychol 49(4):289–310
Becker L (1958) Untersuchungen über das Heimfindevermögen der Bienen. Z vergl Physiol 41:1–25
Biegler R (2000) Possible uses of path integration in animal navigation. Anim Learn Behav 28(3):257–277
Blodgett HC (1929) The effect of the introduction of reward upon the maze performance of rats. Univ Cal Publ Psychol 4:113–134
Capaldi EA, Dyer FC (1999) The role of orientation flights on homing performance in honeybees. J Exp Biol 202:1655–1666
Capaldi EA, Smith AD, Osborne JL, Fahrbach SE, Farris SM, Reynolds DR, Edwards AS, Martin A, Robinson GE, Poppy GM, Riley JR (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403:537–540
Cheeseman JF, Millar CD, Greggers U, Lehmann K, Pawley MD, Gallistel CR, Warman GR, Menzel R (2014a) Way-finding in displaced clock-shifted bees proves bees use a cognitive map. Proc Natl Acad Sci USA 111(24):8949–8954
Cheeseman JF, Millar CD, Greggers U, Lehmann K, Pawley MD, Gallistel CR, Warman GR, Menzel R (2014b) Reply to Cheung et al.: The cognitive map hypothesis remains the best interpretation of the data in honeybee navigation. PNAS 2014; published ahead of print October 2, 2014. doi:10.1073/pnas.1415738111
Cheung A, Collett M, Collett TS, Dewar A, Dyer F, Graham P, Mangan M, Narendra A, Philippides A, Stürzl W, Webb B, Wystrach A, Zeil J (2014) Still no convincing evidence for cognitive map use by honeybees. PNAS 2014; published ahead of print October 2, 2014. doi:10.1073/pnas.1413581111
Chittka L, Geiger K (1995) Can honeybees count landmarks? Anim Behav 49:159–164
Chittka L, Geiger K, Kunze J (1995) The influences of landmarks on distance estimation of honey bees. Anim Behav 50:23–31
Clark A (1998) Being there: putting brain, body, and world together again. MIT Press, Boston
Collett TS, Kelber A (1988) The retrieval of visuo-spatial memories by honeybees. J Comp Physiol A 163(1):145–150
Cruse H, Wehner R (2011) No need for a cognitive map: decentralized memory for insect navigation. PLoS Comput Biol 7(3):e1002009
De Marco RJ, Menzel R (2005) Encoding spatial information in the waggle dance. J Exp Biol 208:3885–3894
Degen J, Kirbach A, Reiter L, Lehmann K, Norton P, Storms M, Koblofsky M, Jones S, Georgieva PB, Nguyen H, Chamkhi H, Greggers U, Menzel R (2015) Honeybees apply effective exploration strategies during orientation flights. Anim Behav
Dyer FC, Gould JL (1981) Honey bee orientation: a backup system for cloudy days. Science 214:1041–1042
Engel AK, Maye A, Kurthen M, Konig P (2013) Where’s the action? The pragmatic turn in cognitive science. Trends Cogn Sci 17(5):202–209
Fischer J, Muller T, Spatz AK, Greggers U, Grunewald B, Menzel R (2014) Neonicotinoids interfere with specific components of navigation in honeybees. PLoS One 9(3):e91364
Gallistel CR (1990) The organization of learning. Cambridge, Mass. MIT Press, London
Gould JL (1986) Landmark learning by honey bees. Anim Behav 35:26–34
Greggers U, Mauelshagen J (1997) Matching behavior of honeybees in a multiple-choice situation: the differential effect of environmental stimuli on the choice process. Anim Learn Behav 25(4):458–472
Gruter C, Farina WM (2009) The honeybee waggle dance: can we follow the steps? Trends Ecol Evol 24(5):242–247
Gruter C, Leadbeater E (2014) Insights from insects about adaptive social information use. Trends Ecol Evol 29(3):177–184
Hartmann G, Wehner R (1995) The ant’s path integration system: a neural architecture. Biol Cybern 73:483–497
Hommel B, Elsner B (2009) Acquisition, representation, and control of action. In: Morsella E (ed) Oxford handbook of human action. Oxford University Press, Oxford, pp 371–398
Jacobs LF, Schenk F (2003) Unpacking the cognitive map: the parallel map theory of hippocampal function. Psychol Rev 110:285–315
Jacobs LF, Menzel R (2014) Navigation outside of the box: what the lab can learn from the field and what the field can learn from the lab. Mov Ecol 2(3):1–22
Kemfort JR, Towne WF (2013) Honeybees can learn the relationship between the solar ephemeris and a newly experienced landscape: a confirmation. J Exp Biol 216(Pt 20):3767–3771
Kramer G (1952) Experiments on bird orientation. Ibis 94:265–285
Lehrer M (1993) Why do bees turn back and look? J Comp Physiol [A] 172:549–563
Lehrer M (1997) Honeybees' visual spatial orientation at the feeding site. In: Lehrer M (ed) Detection and Comunication in Arthropods. Birkhäuser, Basel, pp 115–44
Lindauer M (1952) Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Z vergl Physiol 34:299–345
Locke NM (1936) A preliminary study of the social drive in the white rat. J Psychol 1:255–260
McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7(8):663–678
Menzel R (2009) Serial position learning in honeybees. PLoS One 4:e4694–e4701
Menzel R (2013) The cognitive structure of visual navigation in honeybees. In: Werner JS, Chalupa LM (eds) The new visual neuroscience. MIT Press, Cambridge, pp 1179–1189
Menzel R, Greggers U (2013) Guidance by odors in honeybee navigation. J Comp Physiol A 199(10):867–873
Menzel R, Geiger K, Müller U, Joerges J, Chittka L (1998) Bees travel novel homeward routes by integrating separately acquired vector memories. Anim Behav 55:139–152
Menzel R, Brandt R, Gumbert A, Komischke B, Kunze J (2000) Two spatial memories for honeybee navigation. Proc R Soc Lond B Biol Sci 267(1447):961–968
Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hulse S, Plumpe T, Schaupp F, Schuttler E, Stach S, Stindt J, Stollhoff N, Watzl S (2005) Honey bees navigate according to a map-like spatial memory. Proc Natl Acad Sci USA 102(8):3040–3045
Menzel R, De Marco RJ, Greggers U (2006) Spatial memory, navigation and dance behaviour in Apis mellifera. J Comp Physiol A 192(9):889–903
Menzel R, Fuchs J, Nadler L, Weiss B, Kumbischinski N, Adebiyi D, Hartfil S, Greggers U (2010) Dominance of the odometer over serial landmark learning in honeybee navigation. Naturwiss 97(8):763–767
Menzel R, Kirbach A, Haass W-D, Fischer B, Fuchs J, Koblofsky M, Lehmann K, Reiter L, Meyer H, Nguyen H, Jones S, Norton P, Greggers U (2011) A common frame of reference for learned and communicated vectors in honeybee navigation. Curr Biol 21:645–650
Menzel R, Lehmann K, Manz G, Fuchs J, Kobolofsky MGU (2012) Vector integration and novel shortcutting in honeybee navigation. Apidologie 43:229–243. doi:10.1007/s13592-012-0127-z
Montgomery KC (1954) The role of the exploratory drive in learning. J Comp Physiol Psychol 47(1):60–64
Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290
O’Keefe J (1991) An allocentric spatial model for the hippocampal cognitive map. Hippocampus 1:230–235
O’Keefe J, Burgess N (1996) Geometric determinants of the place fields of hippocampal neurons. Nature 381:425–428
O’Keefe J, Nadel J (1978) The hippocampus as a cognitive map. Oxford University Press, New York
Opfinger E (1931) Über die Orientierung der Biene an der Futterquelle. Z vergl Physiol 15:432–487
Riley JR, Greggers U, Smith AD, Reynolds DR, Menzel R (2005) The flight paths of honeybees recruited by the waggle dance. Nature 435(7039):205–207
Seeley TD (2011) Honeybee democracy. Princeton University Press, Princeton
Small WS (1899) Notes on the psychic development of the young white rat. Am J Psychol 11:80–100
Tan K, Hu Z, Chen W, Wang Z, Wang Y, Nieh JC (2013) Fearful foragers: honey bees tune colony and individual foraging to multi-predator presence and food quality. PLoS One 8(9):e75841
Thorpe WH (1963) Learning and instinct in animals. Methuen, London
Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208
Tolman EC (1932) Purposive behavior in animals and men. Century, New York
Touretzky DS, Redish AD (1995) Landmark arrays and the Hippocampal cognitive map. In: Proceedings of the 1995 Swedish conference on connectionism (submitted)
Towne WF (2008) Honeybees can learn the relationship between the solar ephemeris and a newly-experienced landscape. J Exp Biol 211(Pt 23):3737–3743
Towne WF, Moscrip H (2008) The connection between landscapes and the solar ephemeris in honeybees. J Exp Biol 211(Pt 23):3729–3736
Vollbehr J (1975) Zur Orientierung junger Honigbienen bei ihrem 1. Orientierungsflug. Zool Jb Physiol 79:33–69
von Frisch K (1946) Die tänze der bienen. Österr Zool Zeit 1:1–48
von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge
von Frisch K, Lindauer M (1954) Himmel und erde in konkurrenz bei der orientierung der bienen. Naturwissenschaften 41:245–253
Wehner R, Menzel R (1990) Do insects have cognitive maps? Annu Rev Neurosci 13:403–414
Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge
Zeil J (1993) Orientation flights of solitary wasps (Cerceris; Specidae; Hymenoptera) I. Description of flight. J Comp Physiol [A] 172:189–205
Zhang SW, Bock F, Si A, Tautz J, Srinivasan MV (2005) Visual working memory in decision making by honey bees. Proc Natl Acad Sci USA 102(14):5250–5255
Acknowledgments
We are most grateful to the large number of students who helped us with the field experiments over the years. We wish to thank in particular Konstantin Lehmann, Jacqueline Degen, Andreas Kirbach and Tim Landgraf for their most valuable contributions. We are also grateful to J. R. Riley, A. M. Reynolds and A. D. Smith for introducing us to the harmonic radar tracking of bees. Work with the radar tracking technique was supported by grants from the Deutsche Forschungsgemeinschaft (DFG Me 365/25-1 und 25-2) and the Deutscher Akademischer Austauschdienst. RM received in addition grants from the Dr. Klaus Tschira Stiftung and from the Gemeinnützige Hertie Stiftung. UG was supported by the Olin Stiftung.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Menzel, R., Greggers, U. The memory structure of navigation in honeybees. J Comp Physiol A 201, 547–561 (2015). https://doi.org/10.1007/s00359-015-0987-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00359-015-0987-6