Nothing Special   »   [go: up one dir, main page]

Skip to main content

Restricted Shortest Path in Temporal Graphs

  • Conference paper
  • First Online:
Database and Expert Systems Applications (Globe 2015, DEXA 2015)

Abstract

The restricted shortest path (RSP) problem on directed networks is a well-studied problem, and has a large number of applications such as in Quality of Service routing. The problem is known to be NP-hard. In certain cases, however, the network is not static i.e., edge parameters vary over time. In light of this, we extend the RSP problem for general networks to that for temporal networks. We present several exact algorithms for this problem, one of which uses heuristics, and is similar to the \(A^*\) algorithm. We experimentally evaluate these algorithms by simulating them on both existing temporal networks, and synthetic ones. Furthermore, based on one of the pseudo-polynomial exact algorithms, we derive a fully polynomial time approximation scheme.

This research is funded in part by National Science Foundation (NSF) Grants CCF 1218904 and CCF 1527435.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, X., Kloks, T., Wong, C.K.: Time-varying shortest path problems with constraints. Networks 29(3), 141–150 (1997)

    Article  MathSciNet  Google Scholar 

  2. Carlyle, W.M., Royset, J.O., Kevin Wood, R.: Lagrangian relaxation and enumeration for solving constrained shortest-path problems. Networks 52(4), 256–270 (2008)

    Article  MathSciNet  Google Scholar 

  3. Day, P.R., Ryan, D.M.: Flight attendant rostering for short-haul airline operations. Oper. Res. 45(5), 649–661 (1997)

    Article  Google Scholar 

  4. Ergun, F., Sinha, R., Zhang, L.: An improved FPTAS for restricted shortest path. Inf. Process. Lett. 83(5), 287–291 (2002)

    Article  MathSciNet  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)

    Google Scholar 

  6. Goldberg, A.V., Harrelson, C.: Computing the shortest path: a search meets graph theory. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 156–165. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Google Scholar 

  7. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  8. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math. Oper. Res. 17(1), 36–42 (1992)

    Article  MathSciNet  Google Scholar 

  9. Kempe, D., Kleinberg, J.M., Demers, A.J.: Spatial gossip and resource location protocols. In: Proceedings on 33rd Annual ACM Symposium on Theory of Computing, Heraklion, Crete, Greece, 6–8 July 2001, pp. 163–172 (2001)

    Google Scholar 

  10. Korkmaz, T., Krunz, M.: Multi-constrained optimal path selection. In: Proceedings IEEE INFOCOM 2001, The Conference on Computer Communications, Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, Twenty Years into the Communications Odyssey, Anchorage, Alaska, USA, 22–26 April 2001, pp. 834–843 (2001)

    Google Scholar 

  11. Li, Y., Harms, J., Holte, R.: Fast exact multiconstraint shortest path algorithms. In: IEEE International Conference on Communications, ICC 2007, June 2007, pp. 123–130 (2007)

    Google Scholar 

  12. Lorenz, D., Orda, A.: QoS routing in networks with uncertain parameters. IEEE/ACM Trans. Netw. 6(6), 768–778 (1998)

    Article  Google Scholar 

  13. Lorenz, D.H., Raz, D.: A simple efficient approximation scheme for the restricted shortest path problem. Oper. Res. Lett. 28(5), 213–219 (2001)

    Article  MathSciNet  Google Scholar 

  14. Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 657–668. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 553–564. Springer, Heidelberg (2014)

    Google Scholar 

  16. Nachtigall, K.: Time depending shortest-path problems with applications to railway networks. Eur. J. Oper. Res. 83(1), 154–166 (1995)

    Article  Google Scholar 

  17. Van Mieghem, P., Kuipers, F.: Concepts of exact QoS routing algorithms. IEEE/ACM Trans. Netw. 12(5), 851–864 (2004)

    Article  Google Scholar 

  18. Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Path problems in temporal graphs. Proc. VLDB Endow. 7(9), 721–732 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Ganguly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Biswas, S., Ganguly, A., Shah, R. (2015). Restricted Shortest Path in Temporal Graphs. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds) Database and Expert Systems Applications. Globe DEXA 2015 2015. Lecture Notes in Computer Science(), vol 9261. Springer, Cham. https://doi.org/10.1007/978-3-319-22849-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22849-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22848-8

  • Online ISBN: 978-3-319-22849-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics