Nothing Special   »   [go: up one dir, main page]

Skip to main content

Associative Graph Data Structures Used for Acceleration of K Nearest Neighbor Classifiers

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Abstract

This paper introduces a new associative approach for significant acceleration of k Nearest Neighbor classifiers (kNN). The kNN classifier is a lazy method, i.e. it does not create a computational model, so it is inefficient during classification using big training data sets because it requires going through all training patterns when classifying each sample. In this paper, we propose to use Associative Graph Data Structures (AGDS) as an efficient model for storing training patterns and their relations, allowing for fast access to nearest neighbors during classification made by kNNs. Hence, the AGDS significantly accelerates the classification made by kNNs, especially for large and huge training datasets. In this paper, we introduce an Associative Acceleration Algorithm and demonstrate how it works on this associative structure substantially reducing the number of checked patterns and quickly selecting k nearest neighbors for kNNs. The presented approach was compared to classic kNN approaches successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abidin, T., Perrizo, W.: A fast and scalable nearest neighbor based classifier for data mining. In: Proceedings of ACM SAC 2006, Dijon, France, pp. 536–540. ACM Press, New York (2006)

    Google Scholar 

  2. Agrawal, R.: Extensions of k-nearest neighbor algorithm. Res. J. Appl. Sci. Eng. Technol. 13(1), 24–29 (2016)

    Google Scholar 

  3. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  4. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  5. Grana, M.: Advances in Knowledge-Based and Intelligent Information and Engineering Systems. IOS Press, Amsterdam (2012)

    Google Scholar 

  6. Horzyk, A.: Artificial Associative Systems and Associative Artificial Intelligence. EXIT, Warsaw (2013)

    Google Scholar 

  7. Horzyk, A.: Associative graph data structures with an efficient access via AVB+trees. In: 11th Conference on Human System Interaction (HSI 2018). IEEE Xplore (2018, in print)

    Google Scholar 

  8. Horzyk, A.: Neurons can sort data efficiently. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 64–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_6

    Chapter  Google Scholar 

  9. Horzyk, A.: Deep associative semantic neural graphs for knowledge representation and fast data exploration. In: Proceedings of KEOD 2017, pp. 67–79. Scitepress Digital Library (2017)

    Google Scholar 

  10. Horzyk, A., Starzyk, J.A.: Multi-class and multi-label classification using associative pulsing neural networks. In: 2018 IEEE WCCI IJCNN, pp. 427–434. IEEE Xplore (2018)

    Google Scholar 

  11. Jensen, R., Cornelis, C.: A new approach to fuzzy-rough nearest neighbour classification. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 310–319. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88425-5_32

    Chapter  Google Scholar 

  12. Kalat, J.W.: Biological Grounds of Psychology, 10th edn. Wadsworth Publishing, Belmont (2008)

    Google Scholar 

  13. Tadeusiewicz, R.: New trends in neurocybernetics. Comput. Methods Mater. Sci. 10, 1–7 (2010)

    Google Scholar 

  14. Tadeusiewicz, R.: Introduction to intelligent systems. In: Fault Diagnosis. Models, Artificial Intelligence, Applications, CRC Press, Boca Raton (2011)

    Google Scholar 

  15. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university Press, Cambridge (2014)

    Book  Google Scholar 

  16. Vivencio, D.P., et al.: Feature-weighted k-nearest neighbor classifier. In: Proceedings of FOCI, pp. 481–486 (2007)

    Google Scholar 

  17. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Publishers, Morgan Kaufmann Publishers (2005)

    MATH  Google Scholar 

  18. Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. Trans. Knowl. Data Eng. 26(1), 97–107 (2014)

    Article  Google Scholar 

  19. UCI ML Repository. https://archive.ics.uci.edu/ml/index.php. Accessed 25 May 2018

  20. Dudani, S.A.: The distance-weighted k-nearest neighbor rule. IEEE Trans. Syst. Man Cybern. 6, 325–327 (1976)

    Article  Google Scholar 

  21. Gou, J., Lan, D., Zhang, Y., Xiong, T.: A new distance-weighted k-nearest neighbor classifier. J. Inf. Comput. Sci. 9(6), 1429–1436 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Horzyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Horzyk, A., Gołdon, K. (2018). Associative Graph Data Structures Used for Acceleration of K Nearest Neighbor Classifiers. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01418-6_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01417-9

  • Online ISBN: 978-3-030-01418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics