Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Approach to Fuzzy-Rough Nearest Neighbour Classification

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5306))

Included in the following conference series:

Abstract

In this paper, we present a new fuzzy-rough nearest neighbour (FRNN) classification algorithm, as an alternative to Sarkar’s fuzzy-rough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the experimental analysis, we evaluate our approach with both classical fuzzy-rough approximations (based on an implicator and a t-norm), as well as with the recently introduced vaguely quantified rough sets. Preliminary results are very good, and in general FRNN outperforms both FRNN-O, as well as the traditional fuzzy nearest neighbour (FNN) algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bian, H., Mazlack, L.: Fuzzy-Rough Nearest-Neighbor Classification Approach. In: Proceeding of the 22nd International Conference of the North American Fuzzy Information Processing Society (NAFIPS), pp. 500–505 (2003)

    Google Scholar 

  2. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. Irvine, University of California (1998), http://archive.ics.uci.edu/ml/

  3. Cornelis, C., De Cock, M., Radzikowska, A.M.: Vaguely Quantified Rough Sets. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 87–94. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Cornelis, C., De Cock, M., Radzikowska, A.M.: Fuzzy Rough Sets: from Theory into Practice. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing. Wiley, Chichester (2008)

    Google Scholar 

  5. Cornelis, C., Hurtado Martín, G., Jensen, R., Slezak, D.: Feature Selection with Fuzzy Decision Reducts. In: Proceedings of 3rd International Conference on Rough Sets and Knowledge Technology (RSKT2008) (2008)

    Google Scholar 

  6. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  7. Jensen, R., Shen, Q.: Fuzzy-Rough Sets Assisted Attribute Selection. IEEE Transactions on Fuzzy Systems 15(1), 73–89 (2007)

    Article  Google Scholar 

  8. Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy K-nearest neighbor algorithm. IEEE Trans. Systems Man Cybernet. 15(4), 580–585 (1985)

    Article  Google Scholar 

  9. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishing, Dordrecht (1991)

    Book  MATH  Google Scholar 

  10. Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126(2), 137–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sarkar, M.: Fuzzy-Rough nearest neighbors algorithm. Fuzzy Sets and Systems 158, 2123–2152 (2007)

    Article  MathSciNet  Google Scholar 

  12. Wang, X., Yang, J., Teng, X., Peng, N.: Fuzzy-Rough Set Based Nearest Neighbor Clustering Classification Algorithm. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3613, pp. 370–373. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jensen, R., Cornelis, C. (2008). A New Approach to Fuzzy-Rough Nearest Neighbour Classification. In: Chan, CC., Grzymala-Busse, J.W., Ziarko, W.P. (eds) Rough Sets and Current Trends in Computing. RSCTC 2008. Lecture Notes in Computer Science(), vol 5306. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88425-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88425-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88423-1

  • Online ISBN: 978-3-540-88425-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics