Abstract
Using 2D images in authentication systems raises the question of spoof attacks: is it possible to deceive an authentication system using fake models possessing identical visual properties of the genuine one? In this work, an anti-spoofing method approach for a wine anti-counterfeiting system is presented. The proposed method relies in two different color spaces: CIE L*u*v* and \(YC_rC_b\), to distinguish between a genuine instance and a spoof attack. To evaluate the proposed strategy, two databases were used: a private database, with photos/2D attacks of cork stoppers, created for this work; and the public Replay-Attack database that is used for face spoofing detection methods testing. The results on the private database show that the anti-spoofing approach is able to distinguish with high accuracy a real photo from an attack. Regarding the public database, the results were obtained with existing methods, as the best HTER results using a single frame approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The source code of this work is available at: https://github.com/ee09115/spoofing_detection.
- 2.
- 3.
- 4.
References
Akhtar, Z., Foresti, G.L.: Face spoof attack recognition using discriminative image patches. J. Electr. Comput. Eng. 1–14 (2016). http://www.hindawi.com/journals/jece/2016/4721849/
Alotaibi, A., Mahmood, A.: Enhancing computer vision to detect face spoofing attack utilizing a single frame from a replay video attack using deep learning. In: 2016 International Conference on Optoelectronics and Image Processing (ICOIP), pp. 1–5. IEEE (2016). http://ieeexplore.ieee.org/document/7528488/
Alotaibi, A., Mahmood, A.: Deep face liveness detection based on nonlinear diffusion using convolution neural network. Signal Image Video Process. 11(4), 713–720 (2017). https://doi.org/10.1007/s11760-016-1014-2
Anjos, A., Marcel, S.: Counter-measures to photo attacks in face recognition: a public database and a baseline. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–7. IEEE (2011). http://ieeexplore.ieee.org/document/6117503/
Arashloo, S.R., Kittler, J., Christmas, W.: Face spoofing detection based on multiple descriptor fusion using multiscale dynamic binarized statistical image features. IEEE Trans. Inf. Forensics Secur. 10(11), 2396–2407 (2015). http://ieeexplore.ieee.org/document/7163625/
Atoum, Y., Liu, Y., Jourabloo, A., Liu, X.: Face anti-spoofing using patch and depth-based CNNs. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 319–328. IEEE (2017). http://ieeexplore.ieee.org/document/8272713/
Benlamoudi, A., Aiadi, K.E., Ouafi, A., Samai, D., Oussalah, M.: Face antispoofing based on frame difference and multilevel representation. J. Electron. Imaging 26(4), 043007 (2017). https://doi.org/10.1117/1.JEI.26.4.043007
Bharadwaj, S., Dhamecha, T.I., Vatsa, M., Singh, R.: Computationally efficient face spoofing detection with motion magnification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 105–110. IEEE (2013). http://ieeexplore.ieee.org/document/6595861/
Billmeyer, F.W.: Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed., by Gunter Wyszecki and W. S. Stiles, John Wiley and Sons, New York, 1982, 950 pp. Price: \$75.00. Color Res. Appl. 8(4), 262–263 (1983). https://doi.org/10.1002/col.5080080421
Boulkenafet, Z., Komulainen, J., Hadid, A.: Face anti-spoofing using speeded-up robust features and fisher vector encoding. IEEE Signal Process. Lett. 1 (2016). http://ieeexplore.ieee.org/document/7748511/
Boulkenafet, Z., Komulainen, J., Hadid, A.: Face spoofing detection using colour texture analysis. IEEE Trans. Inf. Forensics Secur. 11(8), 1818–1830 (2016). http://ieeexplore.ieee.org/document/7454730/
Boulkenafet, Z., Komulainen, J., Xiaoyi Feng, Hadid, A.: Scale space texture analysis for face anti-spoofing. In: 2016 International Conference on Biometrics (ICB), pp. 1–6. IEEE (2016). http://ieeexplore.ieee.org/document/7550078/
Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: 2012 BIOSIG - Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–7 (2012)
Chingovska, I., et al.: The 2nd competition on counter measures to 2D face spoofing attacks. In: 2013 International Conference on Biometrics (ICB), pp. 1–6. IEEE (2013). http://ieeexplore.ieee.org/document/6613026/
Chingovska, I., dos Anjos, A.R.: On the use of client identity information for face antispoofing. IEEE Trans. Inf. Forensics Secur. 10(4), 787–796 (2015). http://ieeexplore.ieee.org/document/7031941/
Costa, V., Sousa, A., Reis, A.: Preventing wine counterfeiting by individual cork stopper recognition using image processing technologies. J. Imaging 4(4), 54 (2018). http://www.mdpi.com/2313-433X/4/4/54
Wen, D., Han, H., Jain, A.K.: Face spoof detection with image distortion analysis. IEEE Trans. Inf. Forensics Secur. 10(4), 746–761 (2015). http://ieeexplore.ieee.org/document/7031384/
Edmunds, T., Caplier, A.: Fake face detection based on radiometric distortions. In: 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6. IEEE (2016). http://ieeexplore.ieee.org/document/7820995/
Edmunds, T., Caplier, A.: Face spoofing detection based on colour distortions. IET Biom. 7(1), 27–38 (2018). http://digital-library.theiet.org/content/journals/10.1049/iet-bmt.2017.0077
Farmanbar, M., Toygar, Ö.: Spoof detection on face and palmprint biometrics. Signal Image Video Process. 11(7), 1253–1260 (2017). https://doi.org/10.1007/s11760-017-1082-y
Feng, L., et al.: Integration of image quality and motion cues for face anti-spoofing: a neural network approach. J. Vis. Commun. Image Represent. 38, 451–460 (2016). http://linkinghub.elsevier.com/retrieve/pii/S1047320316300244
de Freitas Pereira, T., et al.: Face liveness detection using dynamic texture. EURASIP J. Image Video Process. 2014(1), 2 (2014). https://jivp-eurasipjournals.springeropen.com/articles/10.1186/1687-5281-2014-2
Galbally, J., Marcel, S.: Face anti-spoofing based on general image quality assessment. In: 2014 22nd International Conference on Pattern Recognition, pp. 1173–1178. IEEE (2014). http://ieeexplore.ieee.org/document/6976921/
Gan, J., Li, S., Zhai, Y., Liu, C.: 3D convolutional neural network based on face anti-spoofing. In: 2017 2nd International Conference on Multimedia and Image Processing (ICMIP), pp. 1–5. IEEE (2017). http://ieeexplore.ieee.org/document/8221060/
Gragnaniello, D., Sansone, C., Poggi, G., Verdoliva, L.: Biometric spoofing detection by a domain-aware convolutional neural network. In: 2016 12th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), pp. 193–198. IEEE (2016). http://ieeexplore.ieee.org/document/7907465/
Kim, I., Ahn, J.., Kim,D.: Face spoofing detection with highlight removal effect and distortions. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 004299–004304. IEEE (2016). http://ieeexplore.ieee.org/document/7844907/
ITU: ITU-R Recommendation BT.601-5: Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios. Technical report, ITU, Geneva, Switzerland (1995)
Yang, J., Lei, Z., Yi, D., Li, S.Z.: Person-specific face antispoofing with subject domain adaptation. IEEE Trans. Inf. Forensics Secur. 10(4), 797–809 (2015). http://ieeexplore.ieee.org/document/7041231/
Karray, F., Campilho, A., Cheriet, F. (eds.): Image Analysis and Recognition. LNCS, vol. 10317. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59876-5
Komulainen, J., Hadid, A., Pietikainen, M., Anjos, A., Marcel, S.: Complementary countermeasures for detecting scenic face spoofing attacks. In: 2013 International Conference on Biometrics (ICB), pp. 1–7. IEEE (2013). http://ieeexplore.ieee.org/document/6612968/
Li, L., Correia, P.L., Hadid, A.: Face recognition under spoofing attacks: countermeasures and research directions. IET Biom. 7(1), 3–14 (2018). http://digital-library.theiet.org/content/journals/10.1049/iet-bmt.2017.0089
Li, L., Feng, X., Boulkenafet, Z., Xia, Z., Li, M., Hadid, A.: An original face anti-spoofing approach using partial convolutional neural network. In: 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6. IEEE (2016). http://ieeexplore.ieee.org/document/7821013/
Maatta, J., Hadid, A., Pietikainen, M.: Face spoofing detection from single images using micro-texture analysis. In: 2011 International Joint Conference on Biometrics (IJCB). pp. 1–7. IEEE (2011). http://ieeexplore.ieee.org/document/6117510/
Manjani, I., Tariyal, S., Vatsa, M., Singh, R., Majumdar, A.: Detecting silicone mask-based presentation attack via deep dictionary learning. IEEE Trans. Inf. Forensics Secur. 12(7), 1713–1723 (2017). http://ieeexplore.ieee.org/document/7867821/
Määttä, J., Hadid, A., Pietikäinen, M.: Face spoofing detection from single images using texture and local shape analysis. IET Biom. 1(1), 3 (2012). http://digital-library.theiet.org/content/journals/10.1049/iet-bmt.2011.0009
Menotti, D., et al.: Deep Representations for iris, face, and fingerprint spoofing detection. IEEE Trans. Inf. Forensics Secur. 10(4), 864–879 (2015). http://ieeexplore.ieee.org/document/7029061/
Asim, M., Ming, Z., Javed, M.Y.: CNN based spatio-temporal feature extraction for face anti-spoofing. In: 2017 2nd International Conference on Image, Vision and Computing (ICIVC), pp. 234–238. IEEE (2017). http://ieeexplore.ieee.org/document/7984552/
Pan, S., Deravi, F.: Facial action units for presentation attack detection. In: 2017 Seventh International Conference on Emerging Security Technologies (EST), pp. 62–67. IEEE (2017). http://ieeexplore.ieee.org/document/8090400/
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Peng, F., Qin, L., Long, M.: POSTER: non-intrusive face spoofing detection based on guided filtering and image quality analysis. In: Deng, R., Weng, J., Ren, K., Yegneswaran, V. (eds.) SecureComm 2016. LNICST, vol. 198, pp. 774–777. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59608-2_49
Peng, F., Qin, L., Long, M.: Face presentation attack detection using guided scale texture. Multimed. Tools Appl. 77(7), 8883–8909 (2018). https://doi.org/10.1007/s11042-017-4780-0
Pinto, A., Pedrini, H., Schwartz, W.R., Rocha, A.: Face spoofing detection through visual codebooks of spectral temporal cubes. IEEE Trans. Image Process. 24(12), 4726–4740 (2015). http://ieeexplore.ieee.org/document/7185398/
Rehman, Y.A.U., Po, L.M., Liu, M.: LiveNet: Improving features generalization for face liveness detection using convolution neural networks. Expert Syst. Appl. 108, 159–169 (2018). http://linkinghub.elsevier.com/retrieve/pii/S0957417418302811
Stuchi, J.A., et al.: Improving image classification with frequency domain layers for feature extraction. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2017). http://ieeexplore.ieee.org/document/8168168/
Tian, Y., Xiang, S.: Detection of video-based face spoofing using LBP and multiscale DCT. In: Shi, Y.Q., Kim, H.J., Perez-Gonzalez, F., Liu, F. (eds.) IWDW 2016. LNCS, vol. 10082, pp. 16–28. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53465-7_2
Tirunagari, S., Poh, N., Windridge, D., Iorliam, A., Suki, N., Ho, A.T.S.: Detection of face spoofing using visual dynamics. IEEE Trans. Inf. Forensics Secur. 10(4), 762–777 (2015). http://ieeexplore.ieee.org/document/7047832/
Tu, X., Fang, Y.: Ultra-deep neural network for face anti-spoofing. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) Neural Information Processing, vol. 10635, pp. 686–695. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70096-0_70
Wang, S.Y., Yang, S.H., Chen, Y.P., Huang, J.W.: Face liveness detection based on skin blood flow analysis. Symmetry 9(12), 305 (2017). http://www.mdpi.com/2073-8994/9/12/305
Kim, W., Suh, S., Han, J.-J.: Face liveness detection from a single image via diffusion speed model. IEEE Trans. Image Process. 24(8), 2456–2465 (2015). http://ieeexplore.ieee.org/document/7084662/
Zhang, L.B., Peng, F., Qin, L., Long, M.: Face spoofing detection based on color texture markov feature and support vector machine recursive feature elimination. J. Vis. Commun. Image Represent. 51, 56–69 (2018). http://linkinghub.elsevier.com/retrieve/pii/S1047320318300014
Zhao, X., Lin, Y., Heikkila, J.: Dynamic texture recognition using volume local binary count patterns with an application to 2D face spoofing detection. IEEE Trans. Multimed. 20(3), 552–566 (2018). http://ieeexplore.ieee.org/document/8030131/
Acknowledgments
Authors gratefully acknowledge the funding of Project NORTE-01-0145-FEDER-000022 - SciTech - Science and Technology for Competitive and Sustainable Industries, co-financed by Programa Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Costa, V., Sousa, A., Reis, A. (2018). Image-Based Object Spoofing Detection. In: Barneva, R., Brimkov, V., Tavares, J. (eds) Combinatorial Image Analysis. IWCIA 2018. Lecture Notes in Computer Science(), vol 11255. Springer, Cham. https://doi.org/10.1007/978-3-030-05288-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-05288-1_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05287-4
Online ISBN: 978-3-030-05288-1
eBook Packages: Computer ScienceComputer Science (R0)