Abstract
Despite the great deal of progress during the recent years, face spoofing detection is still a focus of attention. In this paper, an effective, simple and time-saving countermeasure against video-based face spoofing attacks based on LBP (Local Binary Patterns) and multiscale DCT (Discrete Cosine Transform) is proposed. Adopted as the low-level descriptors, LBP features are used to extract spatial information in each selected frame. Next, multiscale DCT is performed along the ordinate axis of the obtained LBP features to extract spatial information. Representing both spatial and temporal information, the obtained high-level descriptors (LBP-MDCT features) are finally fed into a SVM (Support Vector Machine) classifier to determine whether the input video is a facial attack or valid access. Compared with state of the art, the excellent experimental results of the proposed method on two benchmarking datasets (Replay-Attack and CASIA-FASD dataset) have demonstrated its effectiveness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Galbally, J., Marcel, S., Fierrez, J.: Biometric antispoofing methods: a survey in face recognition. IEEE Access 2, 1530–1552 (2014)
Anjos, A., Marcel, S.: Counter-measures to photo attacks in face recognition: a public database and a baseline. In: 2011 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–7. IEEE Press, Washington, DC (2011)
Galbally, J., Fierrez, J., Alonso-Fernandez, F., Martinez-Diaz, M.: Evaluation of direct attacks to fingerprint verification systems. Telecommun. Syst. 47(3–4), 243–254 (2011)
Mjaaland, B.B., Bours, P., Gligoroski, D.: Walk the walk: attacking gait biometrics by imitation. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 361–380. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18178-8_31
Chen, H., Valizadegan, H., Jackson, C., Soltysiak, S., Jain, A.K.: Fake hands: spoofing hand geometry systems. In: 2005 Biometrics Consortium Conference (BCC) (2005)
Bin, Q., Jian-Fei, P., Guang-Zhong, C., Ge-Guo, D.: The anti-spoofing study of vein identification system. In: International Conference on Computational Intelligence and Security (ICCIS), pp. 357–360 (2009)
Akhtar, Z., Fumera, G., Marcialis, G.L., Roli, F.: Evaluation of serial and parallel multibiometric systems under spoofing attacks. In: 5th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 283–288 (2012)
Tome, P., Vanoni, M., Marcel, S.: On the vulnerability of finger vein recognition to spoofing. In: International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–10 (2014)
Tan, X., Li, Y., Liu, J., Jiang, L.: Face liveness detection from a single image with sparse low rank bilinear discriminative model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 504–517. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15567-3_37
Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.: A face antispoofing database with diverse attacks. In: 2012 5th IAPR International Conference on Biometrics (ICB), pp. 26–31. IEEE Press (2012)
Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–7. IEEE Press, Darmstadt (2012)
Erdogmus, N., Marcel, S.: Spoofing in 2D face recognition with 3D masks and anti-spoofing with kinect. In: 6th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–6 (2013)
Pinto, A., Schwartz, W.R., Pedrini, H., de Rezende Rocha, A.: Using visual rhythms for detecting video-based facial spoof attacks. IEEE Trans. Inf. Forensics Secur. 10(5), 1025–1038 (2015)
Li, J., Wang, Y., Tan, T., Jain, A.K.: Live face detection based on the analysis of fourier spectra. Proc. SPIE 5404, 296–303 (2004)
Peixoto, B., Michelassi, C., Rocha, A.: Face liveness detection under bad illumination conditions. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 3557–3560. IEEE Press, Brussels (2011)
Maatta, J., Hadid, A., Pietikäinen, M.: Face spoofing detection from single images using texture and local shape analysis. IET Biometrics 1(1), 3–10 (2012)
Kose, N., Dugelay, J.L.: Classification of captured and recaptured images to detect photograph spoofing. In: 2012 International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, pp. 1027–1032 (2012)
Maatta, J., Hadid, A., Pietikäinen, M.: Face spoofing detection from single images using micro-texture analysis. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–7. IEEE Press, Washington, DC (2011)
Nguyen, H.H., Nguyen-Son, H.-Q., Nguyen, T.D., Echizen, I.: Discriminating between computer-generated facial images and natural ones using smoothness property and local entropy. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Echizen, I. (eds.) IWDW 2015. LNCS, vol. 9569, pp. 39–50. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31960-5_4
de Freitas Pereira, T., Anjos, A., De Martino, J.M., Marcel, S.: LBP–TOP based countermeasure against face spoofing attacks. In: Park, J.-I., Kim, J. (eds.) ACCV 2012. LNCS, vol. 7728, pp. 121–132. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37410-4_11
Tirunagari, S., Poh, N., Windridge, D., Iorliam, A., Suki, N., Ho, A.T.S.: Detection of face spoofing using visual dynamics. IEEE Trans. Inf. Forensics Secur. 10(4), 762–777 (2015)
Arashloo, S.R., Kittler, J., Christmas, W.: Face spoofing detection based on multiple descriptor fusion using multiscale dynamic binarized statistical image features. IEEE Trans. Inf. Forensics Secur. 10(11), 2396–2407 (2015)
Pinto, A., Pedrini, H., Schwartz, W.R., Rocha, A.: Face spoofing detection through visual codebooks of spectral temporal cubes. IEEE Trans. Image Process. 24(12), 4726–4740 (2015)
da Silva Pinto, A., Pedrini, H., Schwartz, W., Rocha, A.: Video-based face spoofing detection through visual rhythm analysis. In: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, Ouro Preto, pp. 221–228 (2012)
Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
Arashloo, S.R., Kittler, J.: Class-specific kernel fusion of multiple descriptors for face verification using multiscale binarised statistical image features. IEEE Trans. Inf. Forensics Secur. 9(12), 2100–2109 (2014)
Arashloo, S.R., Kittler, J.: Dynamic texture recognition using multiscale binarized statistical image features. IEEE Trans. Multimedia 16(8), 2099–2109 (2014)
Chan, C.H., Tahir, M.A., Kittler, J., Pietikainen, M.: Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1164–1177 (2013)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
de Freitas Pereira, T., Komulainen, J., Anjos, A., De Martino, J.M., Hadid, A., Pietikäinen, M., Marcel, S.: Face liveness detection using dynamic texture. EURASIP J. Image Video Process. 2014(2), 1–15 (2014)
Acknowledgments
This work was supported by the National Natural Science Foundation of China (61272414) and the research funding of State Key Laboratory of Information Security (2016-MS-07).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Tian, Y., Xiang, S. (2017). Detection of Video-Based Face Spoofing Using LBP and Multiscale DCT. In: Shi, Y., Kim, H., Perez-Gonzalez, F., Liu, F. (eds) Digital Forensics and Watermarking. IWDW 2016. Lecture Notes in Computer Science(), vol 10082. Springer, Cham. https://doi.org/10.1007/978-3-319-53465-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-53465-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53464-0
Online ISBN: 978-3-319-53465-7
eBook Packages: Computer ScienceComputer Science (R0)