Nothing Special   »   [go: up one dir, main page]

Skip to main content

Business Information Systems for the Cost/Energy Management of Water Distribution Networks: A Critical Appraisal of Alternative Optimization Strategies

  • Conference paper
  • First Online:
Business Information Systems Workshops (BIS 2018)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 339))

Included in the following conference series:

  • 2580 Accesses

Abstract

The objective of this paper is to show how smart water networks enable new strategies for the energy cost management of the network, more precisely Pump Scheduling Optimization. This problem is traditionally solved using mathematical programming and, more recently, nature inspired metaheuristics. The schedules obtained by these methods are typically not robust both respect to random variations in the water demand and the non-linear features of the model. The authors consider three alternative optimization strategies: (i) global optimization of black-box functions, based on a Gaussian model and the use of the hydraulic simulator (EPANET) to evaluate the objective function; (ii) Multi Stage Stochastic Programming, which models the stochastic evolution of the water demand through a scenario analysis to solve an equivalent large scale linear program; and finally (iii), Approximate Dynamic Programming, also known as Reinforcement Learning. With reference to real life experimentation, the last two strategies offer more modeling flexibility, are demand responsive and typically result in more robust solutions (i.e. pump schedules) than mathematical programming. More specifically, Approximate Dynamic Programming works on minimal modelling assumption and can effectively leverage on line data availability into robust on-line Pump Scheduling Optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stewart, R.A., et al.: Integrated intelligent water-energy metering systems and informatics: visioning a digital multi-utility service provider. Environ. Model Softw. 105, 94–117 (2018)

    Article  Google Scholar 

  2. Candelieri, A., Giordani, I., Archetti, F.: Automatic configuration of kernel-based clustering: an optimization approach. In: Battiti, R., Kvasov, D.E., Sergeyev, Y.D. (eds.) LION 2017. LNCS, vol. 10556, pp. 34–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69404-7_3

    Chapter  Google Scholar 

  3. Candelieri, A., Soldi, D., Archetti, F.: Cost-effective sensors placement and leak localization - the Neptun pilot of the ICeWater project. J. Water Supply Res. Technol. AQUA 64(5), 567–582 (2015)

    Article  Google Scholar 

  4. Shabani, S., Candelieri, A., Archetti, F., Naser, G.: Gene expression programming coupled with unsupervised learning: a two-stage learning process in multi-scale, short-term water demand forecasts. Water 10(2) (2018)

    Article  Google Scholar 

  5. Candelieri, A., et al.: Tuning hyperparameters of a SVM-based water demand forecasting system through parallel global optimization. Comput. Oper. Res. (2018)

    Google Scholar 

  6. Candelieri, A., Giordani, I., Archetti, F.: Supporting resilience management of water distribution networks through network analysis and hydraulic simulation. In: 2017 Proceedings of the 21st International Conference on Control Systems and Computer, CSCS 2017, pp. 599–605 (2017)

    Google Scholar 

  7. Candelieri, A., Perego, R., Archetti, F.: Bayesian optimization of pump operations in water distribution systems. J. Glob. Optim. 71(1), 213–235 (2018)

    Article  Google Scholar 

  8. Mala-Jetmarova, H., Sultanova, N., Savic, D.: Lost in optimisation of water distribution systems? A literature review of system design. Water 10(3) (2018). https://doi.org/10.3390/w10030307

    Article  Google Scholar 

  9. Rossman, L.A.: EPANET 2: users manual, Washington, DC (2000)

    Google Scholar 

  10. McCormick, G., Powell, R.S.: Derivation of near-optimal pump schedules for water distribution by simulated annealing. J. Oper. Res. Soc. 55(7), 728–736 (2004)

    Article  Google Scholar 

  11. De Paola, F., Fontana, N., Giugni, M., Marini, G., Pugliese, F.: An application of the harmony-search multi-objective (HSMO) optimization algorithm for the solution of pump scheduling problem. Procedia Eng. 162, 494–502 (2016)

    Article  Google Scholar 

  12. Mockus, J.: Bayesian Approach to Global Optimization: Theory and Applications, vol. 37. Springer, Dordrecht (1989). https://doi.org/10.1007/978-94-009-0909-0

    Book  Google Scholar 

  13. Dupacová, J., Consigli, G., Wallace, S.W.: Scenarios for multistage stochastic programs. Ann. Oper. Res. 100(1), 25–53 (2000)

    Article  Google Scholar 

  14. Ghaddar, B., Naoum-Sawaya, J., Kishimoto, A., Taheri, N., Eck, B.: A Lagrangian decomposition approach for the pump scheduling problem in water networks. Eur. J. Oper. Res. 241(2), 490–501 (2015)

    Article  Google Scholar 

  15. D’Ambrosio, C., Lodi, A., Wiese, S., Bragalli, C.: Mathematical programming techniques in water network optimization. Eur. J. Oper. Res. 243(3), 774–788 (2015)

    Article  Google Scholar 

  16. Močkus, J.: On Bayesian methods for seeking the extremum. In: Marchuk, G.I. (ed.) Optimization Techniques 1974. LNCS, vol. 27, pp. 400–404. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07165-2_55

    Chapter  Google Scholar 

  17. Archetti, F., Betrò, B.: A probabilistic algorithm for global optimization. Calcolo 16(3), 335–343 (1979)

    Article  Google Scholar 

  18. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multi-peak curve in the presence of noise. J. Basic Eng. 86(1), 97–106 (1964)

    Article  Google Scholar 

  19. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. JMLR 3, 397–422 (2002)

    Google Scholar 

  20. Frazier, P.I.: Knowledge-Gradient Methods for Statistical Learning. Princeton University, Princeton (2009)

    Google Scholar 

  21. Goryashko, A.P., Nemirovski, A.S.: Robust energy cost optimization of water distribution system with uncertain demand. Autom. Remote Control 75(10), 1754–1769 (2014)

    Article  Google Scholar 

  22. Puleo, V., Morley, M., Freni, G., Savić, D.: Multi-stage linear programming optimization for pump scheduling. Procedia Eng. 70, 1378–1385 (2014)

    Article  Google Scholar 

  23. Housh, M., Ostfeld, A., Shamir, U.: Limited multi-stage stochastic programming for managing water supply systems. Environ. Model Softw. 41, 53–64 (2013)

    Article  Google Scholar 

  24. Candelieri, A., Perego, R., Archetti, F.: Intelligent pump scheduling optimization in water distribution networks. In: 12th International Conference, LION 12, Kalamata, Greece (2018)

    Google Scholar 

  25. Candelieri, A., Archetti, F., Messina, E.: Analytics for supporting urban water management. Environ. Eng. Manag. J. 12(5), 875–881 (2013)

    Article  Google Scholar 

  26. Candelieri, A.: Clustering and support vector regression for water demand forecasting and anomaly detection. Water 9(3) (2017)

    Article  Google Scholar 

  27. Candelieri, A., Soldi, D., Archetti, F.: Short-term forecasting of hourly water consumption by using automatic metering readers data. Procedia Eng. 119(1), 844–853 (2015)

    Article  Google Scholar 

  28. Candelieri, A., Soldi, D., Archetti, F.: Network analysis for resilience evaluation in water distribution networks. Environ. Eng. Manag. J. 14(6), 1261–1270 (2015)

    Article  Google Scholar 

  29. Soldi, D., Candelieri, A., Archetti, F.: Resilience and vulnerability in urban water distribution networks through network theory and hydraulic simulation. Procedia Eng. 119(1), 1259–1268 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Candelieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Candelieri, A., Galuzzi, B.G., Giordani, I., Perego, R., Archetti, F. (2019). Business Information Systems for the Cost/Energy Management of Water Distribution Networks: A Critical Appraisal of Alternative Optimization Strategies. In: Abramowicz, W., Paschke, A. (eds) Business Information Systems Workshops. BIS 2018. Lecture Notes in Business Information Processing, vol 339. Springer, Cham. https://doi.org/10.1007/978-3-030-04849-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04849-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04848-8

  • Online ISBN: 978-3-030-04849-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics