Nothing Special   »   [go: up one dir, main page]

Skip to main content

Support Vector Machines for Pattern Classification

  • Book
  • © 2010
  • Latest edition

Overview

  • A comprehensive resource for the use of Support Vector Machines in Pattern Classification
  • Takes the unique approach of focussing on classification rather than covering the theoretical aspects of Support Vector Machines
  • Includes application of SVMs to pattern classification, extensive discussions on multiclass support vector machines, and performance evaluation of major methods using benchmark data sets

Part of the book series: Advances in Computer Vision and Pattern Recognition (ACVPR)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.

Similar content being viewed by others

Keywords

Table of contents (11 chapters)

Reviews

From the reviews:

"This broad and deep … book is organized around the highly significant concept of pattern recognition by support vector machines (SVMs). … The book is praxis and application oriented but with strong theoretical backing and support. Many … details are presented and discussed, thereby making the SVM both an easy-to-understand learning machine and a more likable data modeling (mining) tool. Shigeo Abe has produced the book that will become the standard … . I like it and therefore highly recommend this book … ." (Vojislav Kecman, SIAM Review, Vol. 48 (2), 2006)

Authors and Affiliations

  • Dept. Electrical & Electronics, Engineering, Kobe University, Kobe, Japan

    Shigeo Abe

Bibliographic Information

Publish with us