Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Pattern Recognition ((ACVPR))

Abstract

Support vector machines and their variants and extensions, often called kernel-based methods (or simply kernel methods), have been studied extensively and applied to various pattern classification and function approximation problems. Pattern classification is to classify some object into one of the given categories called classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We may define the sign function by

    $\textrm{sign}(x)=\begin{cases}1 &x > 0,\\ 0 &x=0,\\-1 &x < 0.\end{cases}$
  2. 2.

    It is my regret that I could not reevaluate the computer experiments, included in the book, that violate this rule.

References

  1. K. Fukunaga. Introduction to Statistical Pattern Recognition, Second Edition. Academic Press, San Diego, 1990.

    MATH  Google Scholar 

  2. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, 1995.

    Google Scholar 

  3. S. Abe. Neural Networks and Fuzzy Systems: Theory and Applications. Kluwer Academic Publishers, Norwell, MA, 1997.

    Google Scholar 

  4. S. Haykin. Neural Networks: A Comprehensive Foundation, Second Edition. Prentice Hall, Upper Saddle River, NJ, 1999.

    MATH  Google Scholar 

  5. J. C. Bezdek, J. Keller R. Krisnapuram, and N. R. Pal. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic Publishers, Norwell, MA, 1999.

    Google Scholar 

  6. S. K. Pal and S. Mitra. Neuro-Fuzzy Pattern Recognition: Methods in Soft Computing. John Wiley & Sons, New York, 1999.

    Google Scholar 

  7. S. Abe. Pattern Classification: Neuro-Fuzzy Methods and Their Comparison. Springer-Verlag, London, 2001.

    Google Scholar 

  8. V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

    Google Scholar 

  9. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  10. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

    Google Scholar 

  11. U. H.-G. Kreßel. Pairwise classification and support vector machines. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 255–268. MIT Press, Cambridge, MA, 1999.

    Google Scholar 

  12. T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

    MATH  Google Scholar 

  13. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons, New York, 1973.

    Google Scholar 

  14. J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-TR-98-04, Royal Holloway, University of London, London, UK, 1998.

    Google Scholar 

  15. J. Weston and C. Watkins. Support vector machines for multi-class pattern recognition. In Proceedings of the Seventh European Symposium on Artificial Neural Networks (ESANN 1999), pages 219–224, Bruges, Belgium, 1999.

    Google Scholar 

  16. K. P. Bennett. Combining support vector and mathematical programming methods for classification. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 307–326. MIT Press, Cambridge, MA, 1999.

    Google Scholar 

  17. E. J. Bredensteiner and K. P. Bennett. Multicategory classification by support vector machines. Computational Optimization and Applications, 12(1–3):53–79, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Guermeur, A. Elisseeff, and H. Paugam-Moisy. A new multi-class SVM based on a uniform convergence result. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000), volume 4, pages 183–188, Como, Italy, 2000.

    Google Scholar 

  19. C. Angulo, X. Parra, and A. Català. An [sic] unified framework for ‘all data at once’ multi-class support vector machines. In Proceedings of the Tenth European Symposium on Artificial Neural Networks (ESANN 2002), pages 161–166, Bruges, Belgium, 2002.

    Google Scholar 

  20. D. Anguita, S. Ridella, and D. Sterpi. A new method for multiclass support vector machines. In Proceedings of International Joint Conference on Neural Networks (IJCNN 2004), volume 1, pages 407–412, Budapest, Hungary, 2004.

    Google Scholar 

  21. K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2):181–201, 2001.

    Article  Google Scholar 

  22. G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3):287–320, 2001.

    Article  MATH  Google Scholar 

  23. Intelligent Data Analysis Group. http://ida.first.fraunhofer.de/projects/bench/ benchmarks.htm.

  24. N. Pochet, F. De Smet, J. A. K. Suykens, and B. L. R. De Moor. http://homes. esat.kuleuven.be/npochet/bioinformatics/.

  25. I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher, M. Bittner, R. Simon, P. Meltzer, B. Gusterson, M. Esteller, M. Raffeld, Z. Yakhini, A. Ben-Dor, E. Dougherty, J. Kononen, L. Bubendorf, W. Fehrle, S. Pittaluga, S. Gruvberger, N. Loman, O. Johannsson, H. Olsson, B. Wilfond, G. Sauter, O.-P. Kallioniemi, A. Borg, and J. Trent. Gene-expression profiles in hereditary breast cancer. The New England Journal of Medicine, 344(8):539–548, 2001.

    Article  Google Scholar 

  26. L. J. van't Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. M. Hart, M. Mao, H. L. Peterse, K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards, and S. H. Friend. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415:530–536, 2002.

    Article  Google Scholar 

  27. U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America, 96(12):6745–6750, 1999.

    Google Scholar 

  28. N. Iizuka, M. Oka, H. Yamada-Okabe, M. Nishida, Y. Maeda, N. Mori, T. Takao, T. Tamesa, A. Tangoku, H. Tabuchi, K. Hamada, H. Nakayama, H. Ishitsuka, T. Miyamoto, A. Hirabayashi, S. Uchimura, and Y. Hamamoto. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. The Lancet, 361(9361):923–929, 2003.

    Article  Google Scholar 

  29. C. L. Nutt, D. R. Mani, R. A. Betensky, P. Tamayo, J. G. Cairncross, C. Ladd, U. Pohl, C. Hartmann, M. E. McLaughlin, T. T. Batchelor, P. M. Black, A. von Deimling, S. L. Pomeroy, T. R. Golub, and D. N. Louis. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Research, 63(7):1602–1607, 2003.

    Google Scholar 

  30. T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286:531–537, 1999.

    Article  Google Scholar 

  31. D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A. Renshaw, A. V. D'Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R. Golub, and W. R. Sellers. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1(2):203–209, 2002.

    Article  Google Scholar 

  32. R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179–188, 1936.

    Google Scholar 

  33. J. C. Bezdek, J. M. Keller, R. Krishnapuram, L. I. Kuncheva, and N. R. Pal. Will the real iris data please stand up? IEEE Transactions on Fuzzy Systems, 7(3):368–369, 1999.

    Article  Google Scholar 

  34. H. Takenaga, S. Abe, M. Takato, M. Kayama, T. Kitamura, and Y. Okuyama. Input layer optimization of neural networks by sensitivity analysis and its application to recognition of numerals. Electrical Engineering in Japan, 111(4):130–138, 1991.

    Article  Google Scholar 

  35. S. M. Weiss and I. Kapouleas. An empirical comparison of pattern recognition, neural nets, and machine learning classification methods. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, pages 781–787, Detroit, 1989.

    Google Scholar 

  36. A. Asuncion and D. J. Newman. UCI machine learning repository, http://www.ics.uci.edu/mlearn/MLRepository.html. 2007.

  37. A. Hashizume, J. Motoike, and R. Yabe. Fully automated blood cell differential system and its application. In Proceedings of the IUPAC Third International Congress on Automation and New Technology in the Clinical Laboratory, pages 297–302, Kobe, Japan, 1988.

    Google Scholar 

  38. M.-S. Lan, H. Takenaga, and S. Abe. Character recognition using fuzzy rules extracted from data. In Proceedings of the Third IEEE International Conference on Fuzzy Systems, volume 1, pages 415–420, Orlando, FL, 1994.

    Google Scholar 

  39. G. L. Cash and M. Hatamian. Optical character recognition by the method of moments. Computer Vision, Graphics, and Image Processing, 39(3):291–310, 1987.

    Article  Google Scholar 

  40. USPS Dataset. http://www-i6.informatik.rwth-aachen.de/keysers/usps.html.

  41. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

    Google Scholar 

  42. Y. LeCun and C. Cortes. The MNIST database of handwritten digits http://yann.lecun.com/exdb/mnist/.

  43. R. S. Crowder. Predicting the Mackey-Glass time series with cascade-correlation learning. In D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Connectionist Models: Proceedings of the 1990 Summer School, pages 117–123. Morgan Kaufmann, San Mateo, CA, 1991.

    Google Scholar 

  44. K. Baba, I. Enbutu, and M. Yoda. Explicit representation of knowledge acquired from plant historical data using neural network. In Proceedings of 1990 IJCNN International Joint Conference on Neural Networks, volume 3, pages 155–160, San Diego, CA, 1990.

    Google Scholar 

  45. UCL Machine Learning Group. http://www.ucl.ac.be/mlg/index.php?page=home.

  46. D. Harrison and D. L. Rubinfeld. Hedonic prices and the demand for clean air. Journal of Environmental Economics and Management, 5(1):81–102, 1978.

    Article  MATH  Google Scholar 

  47. Delve Datasets. http://www.cs.toronto.edu/delve/data/datasets.html.

  48. Milano Chemometrics and QSAR Research Group. http://michem.disat.unimib.it/chm/download/download.htm.

  49. J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1–30, 2006.

    Google Scholar 

  50. T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7):1895–1923, 1998.

    Article  Google Scholar 

  51. J. Davis and M. Goadrich. The relationship between precision-recall and ROC curves. In Proceedings of the Twenty-Third International Conference on Machine Learning (ICML 2006), pages 233–240, Pittsburgh, PA, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Abe .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Abe, S. (2010). Introduction. In: Support Vector Machines for Pattern Classification. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84996-098-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-098-4_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-097-7

  • Online ISBN: 978-1-84996-098-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics