Abstract
Support vector machines and their variants and extensions, often called kernel-based methods (or simply kernel methods), have been studied extensively and applied to various pattern classification and function approximation problems. Pattern classification is to classify some object into one of the given categories called classes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
We may define the sign function by
$\textrm{sign}(x)=\begin{cases}1 &x > 0,\\ 0 &x=0,\\-1 &x < 0.\end{cases}$ - 2.
It is my regret that I could not reevaluate the computer experiments, included in the book, that violate this rule.
References
K. Fukunaga. Introduction to Statistical Pattern Recognition, Second Edition. Academic Press, San Diego, 1990.
C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, 1995.
S. Abe. Neural Networks and Fuzzy Systems: Theory and Applications. Kluwer Academic Publishers, Norwell, MA, 1997.
S. Haykin. Neural Networks: A Comprehensive Foundation, Second Edition. Prentice Hall, Upper Saddle River, NJ, 1999.
J. C. Bezdek, J. Keller R. Krisnapuram, and N. R. Pal. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic Publishers, Norwell, MA, 1999.
S. K. Pal and S. Mitra. Neuro-Fuzzy Pattern Recognition: Methods in Soft Computing. John Wiley & Sons, New York, 1999.
S. Abe. Pattern Classification: Neuro-Fuzzy Methods and Their Comparison. Springer-Verlag, London, 2001.
V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998.
N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, 2000.
V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.
U. H.-G. Kreßel. Pairwise classification and support vector machines. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 255–268. MIT Press, Cambridge, MA, 1999.
T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.
R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons, New York, 1973.
J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-TR-98-04, Royal Holloway, University of London, London, UK, 1998.
J. Weston and C. Watkins. Support vector machines for multi-class pattern recognition. In Proceedings of the Seventh European Symposium on Artificial Neural Networks (ESANN 1999), pages 219–224, Bruges, Belgium, 1999.
K. P. Bennett. Combining support vector and mathematical programming methods for classification. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 307–326. MIT Press, Cambridge, MA, 1999.
E. J. Bredensteiner and K. P. Bennett. Multicategory classification by support vector machines. Computational Optimization and Applications, 12(1–3):53–79, 1999.
Y. Guermeur, A. Elisseeff, and H. Paugam-Moisy. A new multi-class SVM based on a uniform convergence result. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000), volume 4, pages 183–188, Como, Italy, 2000.
C. Angulo, X. Parra, and A. Català. An [sic] unified framework for ‘all data at once’ multi-class support vector machines. In Proceedings of the Tenth European Symposium on Artificial Neural Networks (ESANN 2002), pages 161–166, Bruges, Belgium, 2002.
D. Anguita, S. Ridella, and D. Sterpi. A new method for multiclass support vector machines. In Proceedings of International Joint Conference on Neural Networks (IJCNN 2004), volume 1, pages 407–412, Budapest, Hungary, 2004.
K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2):181–201, 2001.
G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3):287–320, 2001.
Intelligent Data Analysis Group. http://ida.first.fraunhofer.de/projects/bench/ benchmarks.htm.
N. Pochet, F. De Smet, J. A. K. Suykens, and B. L. R. De Moor. http://homes. esat.kuleuven.be/npochet/bioinformatics/.
I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher, M. Bittner, R. Simon, P. Meltzer, B. Gusterson, M. Esteller, M. Raffeld, Z. Yakhini, A. Ben-Dor, E. Dougherty, J. Kononen, L. Bubendorf, W. Fehrle, S. Pittaluga, S. Gruvberger, N. Loman, O. Johannsson, H. Olsson, B. Wilfond, G. Sauter, O.-P. Kallioniemi, A. Borg, and J. Trent. Gene-expression profiles in hereditary breast cancer. The New England Journal of Medicine, 344(8):539–548, 2001.
L. J. van't Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. M. Hart, M. Mao, H. L. Peterse, K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards, and S. H. Friend. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415:530–536, 2002.
U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America, 96(12):6745–6750, 1999.
N. Iizuka, M. Oka, H. Yamada-Okabe, M. Nishida, Y. Maeda, N. Mori, T. Takao, T. Tamesa, A. Tangoku, H. Tabuchi, K. Hamada, H. Nakayama, H. Ishitsuka, T. Miyamoto, A. Hirabayashi, S. Uchimura, and Y. Hamamoto. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. The Lancet, 361(9361):923–929, 2003.
C. L. Nutt, D. R. Mani, R. A. Betensky, P. Tamayo, J. G. Cairncross, C. Ladd, U. Pohl, C. Hartmann, M. E. McLaughlin, T. T. Batchelor, P. M. Black, A. von Deimling, S. L. Pomeroy, T. R. Golub, and D. N. Louis. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Research, 63(7):1602–1607, 2003.
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286:531–537, 1999.
D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A. Renshaw, A. V. D'Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R. Golub, and W. R. Sellers. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1(2):203–209, 2002.
R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179–188, 1936.
J. C. Bezdek, J. M. Keller, R. Krishnapuram, L. I. Kuncheva, and N. R. Pal. Will the real iris data please stand up? IEEE Transactions on Fuzzy Systems, 7(3):368–369, 1999.
H. Takenaga, S. Abe, M. Takato, M. Kayama, T. Kitamura, and Y. Okuyama. Input layer optimization of neural networks by sensitivity analysis and its application to recognition of numerals. Electrical Engineering in Japan, 111(4):130–138, 1991.
S. M. Weiss and I. Kapouleas. An empirical comparison of pattern recognition, neural nets, and machine learning classification methods. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, pages 781–787, Detroit, 1989.
A. Asuncion and D. J. Newman. UCI machine learning repository, http://www.ics.uci.edu/mlearn/MLRepository.html. 2007.
A. Hashizume, J. Motoike, and R. Yabe. Fully automated blood cell differential system and its application. In Proceedings of the IUPAC Third International Congress on Automation and New Technology in the Clinical Laboratory, pages 297–302, Kobe, Japan, 1988.
M.-S. Lan, H. Takenaga, and S. Abe. Character recognition using fuzzy rules extracted from data. In Proceedings of the Third IEEE International Conference on Fuzzy Systems, volume 1, pages 415–420, Orlando, FL, 1994.
G. L. Cash and M. Hatamian. Optical character recognition by the method of moments. Computer Vision, Graphics, and Image Processing, 39(3):291–310, 1987.
USPS Dataset. http://www-i6.informatik.rwth-aachen.de/keysers/usps.html.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
Y. LeCun and C. Cortes. The MNIST database of handwritten digits http://yann.lecun.com/exdb/mnist/.
R. S. Crowder. Predicting the Mackey-Glass time series with cascade-correlation learning. In D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Connectionist Models: Proceedings of the 1990 Summer School, pages 117–123. Morgan Kaufmann, San Mateo, CA, 1991.
K. Baba, I. Enbutu, and M. Yoda. Explicit representation of knowledge acquired from plant historical data using neural network. In Proceedings of 1990 IJCNN International Joint Conference on Neural Networks, volume 3, pages 155–160, San Diego, CA, 1990.
UCL Machine Learning Group. http://www.ucl.ac.be/mlg/index.php?page=home.
D. Harrison and D. L. Rubinfeld. Hedonic prices and the demand for clean air. Journal of Environmental Economics and Management, 5(1):81–102, 1978.
Delve Datasets. http://www.cs.toronto.edu/delve/data/datasets.html.
Milano Chemometrics and QSAR Research Group. http://michem.disat.unimib.it/chm/download/download.htm.
J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1–30, 2006.
T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7):1895–1923, 1998.
J. Davis and M. Goadrich. The relationship between precision-recall and ROC curves. In Proceedings of the Twenty-Third International Conference on Machine Learning (ICML 2006), pages 233–240, Pittsburgh, PA, 2006.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2010 Springer-Verlag London Limited
About this chapter
Cite this chapter
Abe, S. (2010). Introduction. In: Support Vector Machines for Pattern Classification. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84996-098-4_1
Download citation
DOI: https://doi.org/10.1007/978-1-84996-098-4_1
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-84996-097-7
Online ISBN: 978-1-84996-098-4
eBook Packages: Computer ScienceComputer Science (R0)