Nothing Special   »   [go: up one dir, main page]

Skip to main content

Trend Mining and Visualisation in Social Networks

  • Conference paper
  • First Online:
Research and Development in Intelligent Systems XXVIII (SGAI 2011)

Abstract

A framework, the IGCV (Identification, Grouping, Clustering and Visualisation) framework, is described to support the temporal analysis of social network data. More specifically the identification and visualisation of “traffic movement” of patterns in such networks, and how such patterns change over time. A full description of the operation of IGCV is presented, together with an evaluation of its operation using a cattle movement network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., and Swami, A. Mining Association Rules between Sets of Items in Large Databases. Proc ACM SIGMOD International Conference on Knowledge Discovery and Data Mining (KDD’93), ACM, pp 207–216 (1993)

    Google Scholar 

  2. Choudhury, M.D., Sundaram, H., John, A. and Seligmann D.D. Can blog communication dynamics be correlated with stock market activity? Proc of the 19th ACM Conference on Hypertext and hypermedia, ACM, pp 55–60 (2008)

    Google Scholar 

  3. Coenen, F.P., Goulbourne, G. and Leng, P. Computing Association Rules Using Partial Totals. Proc. PKDD, LNCS 2168, Springer, pp 54–66 (2001)

    Google Scholar 

  4. Coenen, F., Leng, P. and Ahmed, S. Data Structures for Association Rule Mining: T-trees and P- trees. IEEE Transactions on Data and Knowledge Engineering, 16(6), pp 774–778 (2004)

    Article  Google Scholar 

  5. Cottrell, M., Rousset, P. A powerful Tool for Analyzing and Representing Multidimensional Quantitative and Qualitative Data. In Proceedings of IWANN 97. LNCS, Springer Berlin / Heidelberg, vol. 1240, pp 861-871 (2006)

    Google Scholar 

  6. Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), pp 359–377 (2006)

    Article  Google Scholar 

  7. Defra. Livestock movements, identification and tracing: Cattle Tracing System. http://www.defra.gov.uk/foodfarm/farmanimal/movements/cattle/cts.htm

  8. Gloor, P.A., Krauss, J.S., Nann, S., Fischbach, K. and Schoder, D. Web Science 2.0: Identifying Trends Through Semantic Social Network Analysis. Social Science Research Network. (2008)

    Google Scholar 

  9. Havre, S., Hetzler, E., Whitney, P. and Nowell, L. ThemeRiver: Visualizing Thematic Changes in Large Document Collections. IEEE Transactions on Visualization and Computer Graphics, 8(1), pp 9–20 (2002)

    Article  Google Scholar 

  10. Kohonen, T. The Self Organizing Maps. Series in Information Sciences, vol. 30. Springer, Heidelberg. (1995)

    Google Scholar 

  11. Kohavi, R., Rothleder, N.J. and Simoudis, E. Emerging trends in business analytics, Commun. ACM, 45(8), pp 45–48 (2002)

    Article  Google Scholar 

  12. Lent, B., Agrawal, R. and Srikant, R. Discovering Trends in Text Databases Proc ACM SIGMOD International Conference on Knowledge Discovery and Data Mining (KDD’93), ACM, pp 227–230 (1997)

    Google Scholar 

  13. Newman, M.E.J. Fast Algorithms for Detecting Community Structure in Networks. Phys. Rev. E 69, 066113, pp 1–5 (2004)

    Google Scholar 

  14. Newman, M.E.J. and Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113, pp 1–15 (2004)

    Google Scholar 

  15. Nishikido, T., Sunayama W. and Nishihara, Y. Valuable Change Detection in Keyword Map Animation. Proc. 22nd Canadian Conference on Artificial Intelligence, Springer-Verlag, LNCS 5549, pp 233–236 (2009)

    Google Scholar 

  16. Nohuddin, P.N.E., Coenen, F., Christley, R. and Setzkorn, C. Trend Mining in Social Networks: A Study Using A Large Cattle Movement Database. Proc. 10th Ind. Conf. on Data Mining, Springer LNAI 6171, pp 464–475 (2010)

    Google Scholar 

  17. Nohuddin, P.N.E., Christley, B., Coenen, F. and Setzkorn, C. Detecting Temporal Pattern and Cluster Changes in Social Networks: A study focusing UK Cattle Movement Database. Proc. 6th Int. Conf. on Intelligent Information Processing (IIP’10), IFIP, pp 163–172 (2010)

    Google Scholar 

  18. Nohuddin, P.N.E., Christley, R., Coenen, F., Patel, Y., Setzkorn, C. and Williams, S. Social Network Trend Analysis Using Frequent Pattern Mining and Self Organizing Maps. Research and Development in Intelligent Systems XXVII, Springer-Verlag London Limited, pp 311 (2011)

    Google Scholar 

  19. Richardson, M. and Domingos, P. Mining Knowledge Sharing Sites for Viral Marketing, Proc ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’02), ACM, pp 61–70 (2002)

    Google Scholar 

  20. Robertson, G., Fernandez, R., Fisher, D., Lee, B. and Stasko, J. Effectiveness of Animation in Trend Visualization. Transactions on Visualization and Computer Graphics, 14(6), pp 1325–1332 (2008)

    Article  Google Scholar 

  21. Safaei, M., Sahan, M. and Ilkan, M. Social Graph Generation and Forecasting Using Social Network Mining. 33rd Annual IEEE International Computer Software and Applications Conference, Compsac, vol. 2, pp 31–35 (2009)

    Google Scholar 

  22. Sugiyama K. and Misue, K. Graph Drawing by the Magnetic Spring Model, Journal of Visual Languages and Computing, Vol. 6, No. 3, pp 217–231 (1995)

    Article  Google Scholar 

  23. Xu Z., Tresp, V., Achim, R. and Kersting, K. Social Network Mining with Nonparametric Relational Models. Advances in Social Network Mining and Analysis - the Second SNA-KDD Workshop at KDD 2008, LNCS Vol. 5498 (2010), pp 77–96 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puteri N.E. Nohuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this paper

Cite this paper

Nohuddin, P.N., Sunayama, W., Christley, R., Coenen, F., Setzkorn, C. (2011). Trend Mining and Visualisation in Social Networks. In: Bramer, M., Petridis, M., Nolle, L. (eds) Research and Development in Intelligent Systems XXVIII. SGAI 2011. Springer, London. https://doi.org/10.1007/978-1-4471-2318-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2318-7_21

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2317-0

  • Online ISBN: 978-1-4471-2318-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics