Abstract
A framework, the IGCV (Identification, Grouping, Clustering and Visualisation) framework, is described to support the temporal analysis of social network data. More specifically the identification and visualisation of “traffic movement” of patterns in such networks, and how such patterns change over time. A full description of the operation of IGCV is presented, together with an evaluation of its operation using a cattle movement network.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., and Swami, A. Mining Association Rules between Sets of Items in Large Databases. Proc ACM SIGMOD International Conference on Knowledge Discovery and Data Mining (KDD’93), ACM, pp 207–216 (1993)
Choudhury, M.D., Sundaram, H., John, A. and Seligmann D.D. Can blog communication dynamics be correlated with stock market activity? Proc of the 19th ACM Conference on Hypertext and hypermedia, ACM, pp 55–60 (2008)
Coenen, F.P., Goulbourne, G. and Leng, P. Computing Association Rules Using Partial Totals. Proc. PKDD, LNCS 2168, Springer, pp 54–66 (2001)
Coenen, F., Leng, P. and Ahmed, S. Data Structures for Association Rule Mining: T-trees and P- trees. IEEE Transactions on Data and Knowledge Engineering, 16(6), pp 774–778 (2004)
Cottrell, M., Rousset, P. A powerful Tool for Analyzing and Representing Multidimensional Quantitative and Qualitative Data. In Proceedings of IWANN 97. LNCS, Springer Berlin / Heidelberg, vol. 1240, pp 861-871 (2006)
Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), pp 359–377 (2006)
Defra. Livestock movements, identification and tracing: Cattle Tracing System. http://www.defra.gov.uk/foodfarm/farmanimal/movements/cattle/cts.htm
Gloor, P.A., Krauss, J.S., Nann, S., Fischbach, K. and Schoder, D. Web Science 2.0: Identifying Trends Through Semantic Social Network Analysis. Social Science Research Network. (2008)
Havre, S., Hetzler, E., Whitney, P. and Nowell, L. ThemeRiver: Visualizing Thematic Changes in Large Document Collections. IEEE Transactions on Visualization and Computer Graphics, 8(1), pp 9–20 (2002)
Kohonen, T. The Self Organizing Maps. Series in Information Sciences, vol. 30. Springer, Heidelberg. (1995)
Kohavi, R., Rothleder, N.J. and Simoudis, E. Emerging trends in business analytics, Commun. ACM, 45(8), pp 45–48 (2002)
Lent, B., Agrawal, R. and Srikant, R. Discovering Trends in Text Databases Proc ACM SIGMOD International Conference on Knowledge Discovery and Data Mining (KDD’93), ACM, pp 227–230 (1997)
Newman, M.E.J. Fast Algorithms for Detecting Community Structure in Networks. Phys. Rev. E 69, 066113, pp 1–5 (2004)
Newman, M.E.J. and Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113, pp 1–15 (2004)
Nishikido, T., Sunayama W. and Nishihara, Y. Valuable Change Detection in Keyword Map Animation. Proc. 22nd Canadian Conference on Artificial Intelligence, Springer-Verlag, LNCS 5549, pp 233–236 (2009)
Nohuddin, P.N.E., Coenen, F., Christley, R. and Setzkorn, C. Trend Mining in Social Networks: A Study Using A Large Cattle Movement Database. Proc. 10th Ind. Conf. on Data Mining, Springer LNAI 6171, pp 464–475 (2010)
Nohuddin, P.N.E., Christley, B., Coenen, F. and Setzkorn, C. Detecting Temporal Pattern and Cluster Changes in Social Networks: A study focusing UK Cattle Movement Database. Proc. 6th Int. Conf. on Intelligent Information Processing (IIP’10), IFIP, pp 163–172 (2010)
Nohuddin, P.N.E., Christley, R., Coenen, F., Patel, Y., Setzkorn, C. and Williams, S. Social Network Trend Analysis Using Frequent Pattern Mining and Self Organizing Maps. Research and Development in Intelligent Systems XXVII, Springer-Verlag London Limited, pp 311 (2011)
Richardson, M. and Domingos, P. Mining Knowledge Sharing Sites for Viral Marketing, Proc ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’02), ACM, pp 61–70 (2002)
Robertson, G., Fernandez, R., Fisher, D., Lee, B. and Stasko, J. Effectiveness of Animation in Trend Visualization. Transactions on Visualization and Computer Graphics, 14(6), pp 1325–1332 (2008)
Safaei, M., Sahan, M. and Ilkan, M. Social Graph Generation and Forecasting Using Social Network Mining. 33rd Annual IEEE International Computer Software and Applications Conference, Compsac, vol. 2, pp 31–35 (2009)
Sugiyama K. and Misue, K. Graph Drawing by the Magnetic Spring Model, Journal of Visual Languages and Computing, Vol. 6, No. 3, pp 217–231 (1995)
Xu Z., Tresp, V., Achim, R. and Kersting, K. Social Network Mining with Nonparametric Relational Models. Advances in Social Network Mining and Analysis - the Second SNA-KDD Workshop at KDD 2008, LNCS Vol. 5498 (2010), pp 77–96 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag London Limited
About this paper
Cite this paper
Nohuddin, P.N., Sunayama, W., Christley, R., Coenen, F., Setzkorn, C. (2011). Trend Mining and Visualisation in Social Networks. In: Bramer, M., Petridis, M., Nolle, L. (eds) Research and Development in Intelligent Systems XXVIII. SGAI 2011. Springer, London. https://doi.org/10.1007/978-1-4471-2318-7_21
Download citation
DOI: https://doi.org/10.1007/978-1-4471-2318-7_21
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-4471-2317-0
Online ISBN: 978-1-4471-2318-7
eBook Packages: Computer ScienceComputer Science (R0)