Abstract
In data mining process, visualisations assist the process of exploring data before modeling and exemplify the discovered knowledge into a meaningful representation. Visualisation tools are particularly useful for detecting patterns found in only small areas of the overall data. In this paper, we described a technique for discovering and presenting frequent pattern migrations in temporal social network data. The migrations are identified using the concept of a Migration Matrix and presented using a visualisation tool. The technique has been built into the Pattern Migration Identification and Visualisation (PMIV) framework which is designed to operate using trend clusters which have been extracted from big network data using a Self Organising Map technique. The PMIV is also aimed to detect changes in the characteristics of trend clusters and the existence of communities of trend clusters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An epoch is defined in terms of a start and an end time stamp.
References
Kohonen, T.: The self organizing maps. Neurocomput. Elsevier Sci. 21, 1–6 (1998)
Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, San Francisco (2011)
Adomavicius, G., Bockstedt, J.: C-TREND: temporal cluster graphs for identifying and visualizing trends in multiattribute transactional data. J. IEEE Trans. Knowl. Data Eng. 20, 721–735 (2008)
Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: Proceeding of Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 43–52 (1999)
Nohuddin, P.N.E., Christley, R., Coenen, F., Setzkorn, C.: Trend mining in social networks: a study using a large cattle movement database. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 464–475. Springer, Heidelberg (2010)
Nohuddin, P.N.E., Coenen, F., Christley, R., Setzkorn, C.: Detecting temporal pattern and cluster changes in social networks: a study focusing UK cattle movement database. In: Shi, Z., Vadera, S., Aamodt, A., Leake, D. (eds.) IIP 2010. IFIP AICT, vol. 340, pp. 163–172. Springer, Heidelberg (2010)
Somaraki, V., Broadbent, D., Coenen, F., Harding, S.: Finding temporal patterns in noisy longitudinal data: a study in diabetic retinopathy. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 418–431. Springer, Heidelberg (2010)
Denny, Williams, G.J., Christen, P.: Visualizing temporal cluster changes using relative density self-organizing maps. J. Knowl. Inf. Syst. 25, 281–302 (2010)
Lingras, P., Hogo, M., Snorek, M.: Temporal cluster migration matrices for web usage mining. In: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 441–444 (2004)
Ng, R., Jorg, S., Sleumer, M.: Hierarchical cluster analysis of SAGE data for cancer profiling. In: Proceedings of BIOKDD 2001, pp. 65–72 (2001)
Vijayakumar, M., Parvathi, R.M.S.: Concept mining of high volume data streams in network traffic using hierarchical clustering. J. Eur. J. Sci. Res. 39(2), 234–242 (2010)
Wittman, T.: Time-series clustering and association analysis of financial data. Project thesis (2002)
Sugiyama, K., Misue, K.: Graph drawing by the magnetic spring model. J. Vis. Lang. Comput. 6(3), 217–231 (1995)
Nishikido, T., Sunayama, W., Nishihara, Y.: Valuable change detection in keyword map animation. In: Gao, Y., Japkowicz, N. (eds.) AI 2009. LNCS, vol. 5549, pp. 233–236. Springer, Heidelberg (2009)
Ohsawa, Y.: Modeling the process of chance discovery. In: Ohsawa, Y., Abe, A. (eds.) Advances in Chance Discovery. SCI, vol. 423, pp. 2–15. Springer, Heidelberg (2013)
Newman, M.E.J.: Fast algorithms for detecting community structure in networks. J. Phys. Rev. E 69, 1–5 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Nohuddin, P.N.E., Coenen, F., Christley, R., Sunayama, W. (2015). Visualisation of Trend Pattern Migrations in Social Networks. In: Badioze Zaman, H., et al. Advances in Visual Informatics. IVIC 2015. Lecture Notes in Computer Science(), vol 9429. Springer, Cham. https://doi.org/10.1007/978-3-319-25939-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-25939-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25938-3
Online ISBN: 978-3-319-25939-0
eBook Packages: Computer ScienceComputer Science (R0)