Nothing Special   »   [go: up one dir, main page]

Skip to main content

Visualisation of Trend Pattern Migrations in Social Networks

  • Conference paper
  • First Online:
Advances in Visual Informatics (IVIC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9429))

Included in the following conference series:

Abstract

In data mining process, visualisations assist the process of exploring data before modeling and exemplify the discovered knowledge into a meaningful representation. Visualisation tools are particularly useful for detecting patterns found in only small areas of the overall data. In this paper, we described a technique for discovering and presenting frequent pattern migrations in temporal social network data. The migrations are identified using the concept of a Migration Matrix and presented using a visualisation tool. The technique has been built into the Pattern Migration Identification and Visualisation (PMIV) framework which is designed to operate using trend clusters which have been extracted from big network data using a Self Organising Map technique. The PMIV is also aimed to detect changes in the characteristics of trend clusters and the existence of communities of trend clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An epoch is defined in terms of a start and an end time stamp.

References

  1. Kohonen, T.: The self organizing maps. Neurocomput. Elsevier Sci. 21, 1–6 (1998)

    Article  MATH  Google Scholar 

  2. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, San Francisco (2011)

    Google Scholar 

  3. Adomavicius, G., Bockstedt, J.: C-TREND: temporal cluster graphs for identifying and visualizing trends in multiattribute transactional data. J. IEEE Trans. Knowl. Data Eng. 20, 721–735 (2008)

    Article  Google Scholar 

  4. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: Proceeding of Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 43–52 (1999)

    Google Scholar 

  5. Nohuddin, P.N.E., Christley, R., Coenen, F., Setzkorn, C.: Trend mining in social networks: a study using a large cattle movement database. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 464–475. Springer, Heidelberg (2010)

    Google Scholar 

  6. Nohuddin, P.N.E., Coenen, F., Christley, R., Setzkorn, C.: Detecting temporal pattern and cluster changes in social networks: a study focusing UK cattle movement database. In: Shi, Z., Vadera, S., Aamodt, A., Leake, D. (eds.) IIP 2010. IFIP AICT, vol. 340, pp. 163–172. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Somaraki, V., Broadbent, D., Coenen, F., Harding, S.: Finding temporal patterns in noisy longitudinal data: a study in diabetic retinopathy. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 418–431. Springer, Heidelberg (2010)

    Google Scholar 

  8. Denny, Williams, G.J., Christen, P.: Visualizing temporal cluster changes using relative density self-organizing maps. J. Knowl. Inf. Syst. 25, 281–302 (2010)

    Article  Google Scholar 

  9. Lingras, P., Hogo, M., Snorek, M.: Temporal cluster migration matrices for web usage mining. In: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 441–444 (2004)

    Google Scholar 

  10. Ng, R., Jorg, S., Sleumer, M.: Hierarchical cluster analysis of SAGE data for cancer profiling. In: Proceedings of BIOKDD 2001, pp. 65–72 (2001)

    Google Scholar 

  11. Vijayakumar, M., Parvathi, R.M.S.: Concept mining of high volume data streams in network traffic using hierarchical clustering. J. Eur. J. Sci. Res. 39(2), 234–242 (2010)

    Google Scholar 

  12. Wittman, T.: Time-series clustering and association analysis of financial data. Project thesis (2002)

    Google Scholar 

  13. Sugiyama, K., Misue, K.: Graph drawing by the magnetic spring model. J. Vis. Lang. Comput. 6(3), 217–231 (1995)

    Article  Google Scholar 

  14. Nishikido, T., Sunayama, W., Nishihara, Y.: Valuable change detection in keyword map animation. In: Gao, Y., Japkowicz, N. (eds.) AI 2009. LNCS, vol. 5549, pp. 233–236. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Ohsawa, Y.: Modeling the process of chance discovery. In: Ohsawa, Y., Abe, A. (eds.) Advances in Chance Discovery. SCI, vol. 423, pp. 2–15. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Newman, M.E.J.: Fast algorithms for detecting community structure in networks. J. Phys. Rev. E 69, 1–5 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puteri N. E. Nohuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nohuddin, P.N.E., Coenen, F., Christley, R., Sunayama, W. (2015). Visualisation of Trend Pattern Migrations in Social Networks. In: Badioze Zaman, H., et al. Advances in Visual Informatics. IVIC 2015. Lecture Notes in Computer Science(), vol 9429. Springer, Cham. https://doi.org/10.1007/978-3-319-25939-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25939-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25938-3

  • Online ISBN: 978-3-319-25939-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics