Nothing Special   »   [go: up one dir, main page]

Skip to main content

Type 2 polynomial hierarchies

  • Conference paper
  • First Online:
Logic and Computational Complexity (LCC 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 960))

Included in the following conference series:

  • 157 Accesses

Abstract

In this paper we examine type 2 analogs of the type 1 polynomial hierarchy and show some limitations on finding a completely faithful type 2 analog. We survey most of the notions of type 2 poly-hierarchies already proposed in the literature and present two natural definitions of type 2 poly-hierarchies. We also introduce various resource bounded reductions between functionals of type 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balcazar, Diaz, and Gabarro. Structural Complexity I. Springer-Verlag, 1988.

    Google Scholar 

  2. S. Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.

    Google Scholar 

  3. S. Buss. The polynomial hierarchy and intuitionistic bounded arithmetic. In Structure in Complexity Theory, pages 77–103. Springer-Verlag, Lecture Notes in Computer Science No. 223, 1986.

    Google Scholar 

  4. P. Clote, A. Ignjatovic, and B. Kapron. Parallel computable higher type functional. In Full version, July 1994.

    Google Scholar 

  5. S. Cook and A. Urquhart. Functional interpretations of feasibly constructive arithmetic. Annals of Pure and Applied Logic, pages 103–200, Volume 63, 1993. Extended abstract in STOC89.

    Article  Google Scholar 

  6. S. A. Cook and B. M. Kapron. Characterizations of the basic feasible functional of finite type. In Proceedings of MSI Workshop on Feasible Mathematics, S. Buss and P. J. Scott, {ededitors}, perespective in computer science, Birkhauser-Boston, New York, pages 71–95, 1990.

    Google Scholar 

  7. S. A. Cook and B. M. Kapron. A new characterization of Mehlhorn's polynomial time functionals. In FOCS, 1991.

    Google Scholar 

  8. Stephen A. Cook. Computability and complexity of higher type functions. In MSRI Proceedings, 1990.

    Google Scholar 

  9. Victor Harnik. Provably total functions of intuitionistic bounded arithmetic. Journal of Symbolic Logic, pages 466–477, 1992.

    Google Scholar 

  10. A. Seth. There is no recursive axiomatization for feasible functionals of type 2. In Seventh Annual IEEE Symposium on Logic in Computer Science, 1992.

    Google Scholar 

  11. A. Seth. Some desirable conditions for feasible functional of type 2. In Eighth Annual IEEE Symposium on Logic in Computer Science, 1993.

    Google Scholar 

  12. A. Seth. Turing machine characterizations of feasible functionals of all finite types. In Proceedings of MSI Workshop on Feasible Mathematics, P. Clote and J. Remmel, editors, perespective in computer science, Birkhauser-Boston, New York, 1994.

    Google Scholar 

  13. L. J. Stockmeyer. The polynomial time hierarchy. Theoretical Computer Science, pages 1–22, 1976.

    Google Scholar 

  14. M. Townsend. Complexity for type-2 relations. Notre Dame Journal of Formal Logic, pages 241–262, 1990.

    Google Scholar 

  15. A. Yao. Separating the polynomial-time hierarchy by oracles. In IEEE Symposium on Fondations of Computer Science, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Daniel Leivant

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seth, A. (1995). Type 2 polynomial hierarchies. In: Leivant, D. (eds) Logic and Computational Complexity. LCC 1994. Lecture Notes in Computer Science, vol 960. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60178-3_89

Download citation

  • DOI: https://doi.org/10.1007/3-540-60178-3_89

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60178-4

  • Online ISBN: 978-3-540-44720-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics