Abstract
In this work we put forward a complexity class of type-two linear-time. For such a definition to be meaningful, a detailed protocol for the cost of interactions with functional inputs has to be fixed. This includes some design decisions the defined class is sensible to and we carefully discuss our choices and their implications. We further discuss some properties and examples of operators that are and are not computable in linear-time and nearly linear-time and some applications to computable analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brausse, F., Steinberg, F.: A minimal representation for continuous functions. arXiv preprint arXiv:1703.10044 (2017)
Buss, J.F.: Relativized alternation and space-bounded computation. J. Comput. Syst. Sci. 36(3), 351–378 (1988)
Case, J.: Resource restricted computability theoretic learning: illustrative topics and problems. Theory Comput. Syst. 45(4), 773–786 (2009)
Case, J., Kötzing, T., Paddock, T.: Feasible iteration of feasible learning functionals. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 34–48. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75225-7_7
Férée, H., Hainry, E., Hoyrup, M., Péchoux, R.: Interpretation of stream programs: characterizing type 2 polynomial time complexity. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 291–303. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17517-6_27
Fournet, C., Kohlweiss, M., Strub, P.-Y.: Modular code-based cryptographic verification. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, pp. 341–350. ACM (2011)
Grzegorczyk, A.: On the definitions of computable real continuous functions. Fund. Math. 44, 61–71 (1957)
Gurevich, Y., Shelah, S.: Nearly linear time. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 108–118. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51237-3_10
Irwin, R.J., Royer, J.S., Kapron, B.M.: On characterizations of the basic feasible functionals, part i. J. Funct. Program. 11(1), 117–153 (2001)
Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM J. Comput. 25(1), 117–132 (1996)
Kawamura, A., Cook, S.: Complexity theory for operators in analysis. ACM Trans. Comput. Theory 4(2), Article 5 (2012)
Kawamura, A., Ota, H.: Small complexity classes for computable analysis. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 432–444. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44465-8_37
Kawamura, A., Pauly, A.: Function spaces for second-order polynomial time. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp. 245–254. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08019-2_25
Kawamura, A., Steinberg, F., Thies, H.: Parameterized complexity for uniform operators on multidimensional analytic functions and ODE solving. In: Moss, L.S., de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018. LNCS, vol. 10944, pp. 223–236. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57669-4_13
Lacombe, D.: Sur les possibilités d’extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles. In: Le raisonnement en mathématiques et en sciences expérimentales, Colloques Internationaux du Centre National de la Recherche Scientifique, LXX. Editions du Centre National de la Recherche Scientifique, Paris, pp. 67–75 (1958)
Mehlhorn, K.: Polynomial and abstract subrecursive classes. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 96–109. ACM (1974)
Pauly, A., Steinberg, F.: Comparing representations for function spaces in computable analysis. Theory Comput. Syst. 62(3), 557–582 (2018)
Regan, K.W.: Machine models and linear time complexity. ACM SIGACT News 24(3), 5–15 (1993)
Schröder, M.: Extended admissibility. Theor. Comput. Sci. 284(2), 519–538 (2002)
Schröder, M.: Admissible representations for continuous computations. Fernuniv., Fachbereich Informatik (2003)
Steinberg, F.: Computational complexity theory for advanced function spaces in analysis. Ph.D. thesis, Technische Universität (2017)
Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. 2(1), 230–265 (1936)
Weihrauch, K.: Computable Analysis. Springer, Berlin/Heidelberg (2000). https://doi.org/10.1007/978-3-642-56999-9
Ziegler, M.: Hyper-degrees of 2nd-order polynomial-time reductions. Measuring the Complexity of Computational Content: Weihrauch Reducibility and Reverse Analysis (Dagstuhl Seminar 15392)
Acknowledgements
This work was supported by JSPS KAKENHI Grant Numbers JP18H03203 and JP18J10407, by the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks), by the ANR project FastRelax (ANR-14-CE25-0018-01) of the French National Agency for Research and by EU-MSCA-RISE project 731143 “Computing with Infinite Data” (CID).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kawamura, A., Steinberg, F., Thies, H. (2019). Second-Order Linear-Time Computability with Applications to Computable Analysis. In: Gopal, T., Watada, J. (eds) Theory and Applications of Models of Computation. TAMC 2019. Lecture Notes in Computer Science(), vol 11436. Springer, Cham. https://doi.org/10.1007/978-3-030-14812-6_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-14812-6_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-14811-9
Online ISBN: 978-3-030-14812-6
eBook Packages: Computer ScienceComputer Science (R0)