Nothing Special   »   [go: up one dir, main page]

Skip to main content

Second-Order Linear-Time Computability with Applications to Computable Analysis

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11436))

  • 678 Accesses

Abstract

In this work we put forward a complexity class of type-two linear-time. For such a definition to be meaningful, a detailed protocol for the cost of interactions with functional inputs has to be fixed. This includes some design decisions the defined class is sensible to and we carefully discuss our choices and their implications. We further discuss some properties and examples of operators that are and are not computable in linear-time and nearly linear-time and some applications to computable analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brausse, F., Steinberg, F.: A minimal representation for continuous functions. arXiv preprint arXiv:1703.10044 (2017)

  2. Buss, J.F.: Relativized alternation and space-bounded computation. J. Comput. Syst. Sci. 36(3), 351–378 (1988)

    Article  MathSciNet  Google Scholar 

  3. Case, J.: Resource restricted computability theoretic learning: illustrative topics and problems. Theory Comput. Syst. 45(4), 773–786 (2009)

    Article  MathSciNet  Google Scholar 

  4. Case, J., Kötzing, T., Paddock, T.: Feasible iteration of feasible learning functionals. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 34–48. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75225-7_7

    Chapter  MATH  Google Scholar 

  5. Férée, H., Hainry, E., Hoyrup, M., Péchoux, R.: Interpretation of stream programs: characterizing type 2 polynomial time complexity. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 291–303. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17517-6_27

    Chapter  Google Scholar 

  6. Fournet, C., Kohlweiss, M., Strub, P.-Y.: Modular code-based cryptographic verification. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, pp. 341–350. ACM (2011)

    Google Scholar 

  7. Grzegorczyk, A.: On the definitions of computable real continuous functions. Fund. Math. 44, 61–71 (1957)

    Article  MathSciNet  Google Scholar 

  8. Gurevich, Y., Shelah, S.: Nearly linear time. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 108–118. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51237-3_10

    Chapter  Google Scholar 

  9. Irwin, R.J., Royer, J.S., Kapron, B.M.: On characterizations of the basic feasible functionals, part i. J. Funct. Program. 11(1), 117–153 (2001)

    Article  Google Scholar 

  10. Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM J. Comput. 25(1), 117–132 (1996)

    Article  MathSciNet  Google Scholar 

  11. Kawamura, A., Cook, S.: Complexity theory for operators in analysis. ACM Trans. Comput. Theory 4(2), Article 5 (2012)

    Google Scholar 

  12. Kawamura, A., Ota, H.: Small complexity classes for computable analysis. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 432–444. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44465-8_37

    Chapter  Google Scholar 

  13. Kawamura, A., Pauly, A.: Function spaces for second-order polynomial time. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp. 245–254. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08019-2_25

    Chapter  Google Scholar 

  14. Kawamura, A., Steinberg, F., Thies, H.: Parameterized complexity for uniform operators on multidimensional analytic functions and ODE solving. In: Moss, L.S., de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018. LNCS, vol. 10944, pp. 223–236. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57669-4_13

    Chapter  MATH  Google Scholar 

  15. Lacombe, D.: Sur les possibilités d’extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles. In: Le raisonnement en mathématiques et en sciences expérimentales, Colloques Internationaux du Centre National de la Recherche Scientifique, LXX. Editions du Centre National de la Recherche Scientifique, Paris, pp. 67–75 (1958)

    Google Scholar 

  16. Mehlhorn, K.: Polynomial and abstract subrecursive classes. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 96–109. ACM (1974)

    Google Scholar 

  17. Pauly, A., Steinberg, F.: Comparing representations for function spaces in computable analysis. Theory Comput. Syst. 62(3), 557–582 (2018)

    Article  MathSciNet  Google Scholar 

  18. Regan, K.W.: Machine models and linear time complexity. ACM SIGACT News 24(3), 5–15 (1993)

    Article  Google Scholar 

  19. Schröder, M.: Extended admissibility. Theor. Comput. Sci. 284(2), 519–538 (2002)

    Article  MathSciNet  Google Scholar 

  20. Schröder, M.: Admissible representations for continuous computations. Fernuniv., Fachbereich Informatik (2003)

    Google Scholar 

  21. Steinberg, F.: Computational complexity theory for advanced function spaces in analysis. Ph.D. thesis, Technische Universität (2017)

    Google Scholar 

  22. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. 2(1), 230–265 (1936)

    Article  MathSciNet  Google Scholar 

  23. Weihrauch, K.: Computable Analysis. Springer, Berlin/Heidelberg (2000). https://doi.org/10.1007/978-3-642-56999-9

    Book  MATH  Google Scholar 

  24. Ziegler, M.: Hyper-degrees of 2nd-order polynomial-time reductions. Measuring the Complexity of Computational Content: Weihrauch Reducibility and Reverse Analysis (Dagstuhl Seminar 15392)

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP18H03203 and JP18J10407, by the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks), by the ANR project FastRelax (ANR-14-CE25-0018-01) of the French National Agency for Research and by EU-MSCA-RISE project 731143 “Computing with Infinite Data” (CID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Thies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kawamura, A., Steinberg, F., Thies, H. (2019). Second-Order Linear-Time Computability with Applications to Computable Analysis. In: Gopal, T., Watada, J. (eds) Theory and Applications of Models of Computation. TAMC 2019. Lecture Notes in Computer Science(), vol 11436. Springer, Cham. https://doi.org/10.1007/978-3-030-14812-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14812-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14811-9

  • Online ISBN: 978-3-030-14812-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics