Nothing Special   »   [go: up one dir, main page]

Skip to main content

Phase Transition and Percolation in Gibbsian Particle Models

  • Conference paper
  • First Online:
Statistical Physics and Spatial Statistics

Part of the book series: Lecture Notes in Physics ((LNP,volume 554))

Abstract

We discuss the interrelation between phase transitions in interacting lattice or continuum models, and the existence of infinite clusters in suitable random-graph models. In particular, we describe a random-geometric approach to the phase transition in the continuum Ising model of two species of particles with soft or hard interspecies repulsion. We comment also on the related area-interaction process and on perfect simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baddeley, A.J., M.N.M. van Lieshout (1995): ‘Area-interaction point processes’, Ann. Inst. Statist. Math. 46, pp. 601–619

    Article  Google Scholar 

  2. Chayes, J.T., L. Chayes, R. Kotecký (1995): ‘The analysis of the Widom-Rowlinson model by stochastic geometric methods’, Commun. Math. Phys. 172, pp. 551–569

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Edwards, R.G., A.D. Sokal (1988): ‘Generalization of the Fortuin-Kasteleyn—Swendsen-Wang representation and Monte Carlo algorithm’, Phys. Rev. D 38, pp. 2009–2012

    ADS  MathSciNet  Google Scholar 

  4. Fortuin, C.M., P.W. Kasteleyn (1972): ‘On the random-cluster model. I. Introduction and relation to other models’, Physica 57, pp. 536–564

    Article  ADS  MathSciNet  Google Scholar 

  5. Georgii, H.-O. (1988): Gibbs Measures and Phase Transitions (de Gruyter, Berlin New York)

    MATH  Google Scholar 

  6. Georgii, H.-O. (1994): ‘Large Deviations and the Equivalence of Ensembles for Gibbsian Particle Systems with Superstable Interaction’, Probab. Th. Rel. Fields 99, pp. 171–195

    Article  MATH  MathSciNet  Google Scholar 

  7. Georgii, H.-O. (1995): ‘The Equivalence of Ensembles for Classical Systems of Particles’, J. Statist. Phys. 80, pp. 1341–1378

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Georgii, H.-O. (1999): ‘Translation invariance and continuous symmetries in two dimensional continuum systems’. In: Mathematical results in Statistical Mechanics, ed. by S. Miracle-Sole, J. Ruiz, V. Zagrebnov (World Scientific, Singapore etc.), pp. 53–69

    Google Scholar 

  9. Georgii, H.-O., O. Häggström (1996): ‘Phase transition in continuum Potts models’, Commun. Math. Phys. 181, pp. 507–528

    Article  MATH  ADS  Google Scholar 

  10. Georgii, H.-O., O. Häggström, C. Maes (1999): ‘The random geometry of equilibrium phases’. In: Critical phenomena, ed. by Domb and J.L. Lebowitz (Academic Press), forthcoming

    Google Scholar 

  11. Georgii, H.-O., Y. Higuchi (1999): ‘Percolation and number of phases in the 2D Ising model’, submitted to J. Math. Phys.

    Google Scholar 

  12. Georgii, H.-O., T. Küneth (1997): ‘Stochastic comparison of point random fields’, J. Appl. Probab. 34, pp. 868–881

    Article  MATH  MathSciNet  Google Scholar 

  13. Grimmett, G.R. (1999): Percolation, 2nd ed. (Springer, New York)

    MATH  Google Scholar 

  14. Gruber, Ch., R.B. Griffiths (1986): ‘Phase transition in a ferromagnetic fluid’, Physica A 138, pp. 220–230

    Article  ADS  MathSciNet  Google Scholar 

  15. Häggström, O., M.N.M. van Lieshout, J. Moller (1997): ‘Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes’, Bernoulli, to appear

    Google Scholar 

  16. Likos, C.N, K.R. Mecke, H. Wagner (1995): ‘Statistical morphology of random interfaces in microemulsions’, J. Chem. Phys. 102, pp. 9350–9361

    Article  ADS  Google Scholar 

  17. Mecke, K.R. (1996): ‘A morphological model for complex fluids’, J. Phys.: Condens. Matter 8, pp. 9663–9668

    Article  ADS  Google Scholar 

  18. Meester, R., R. Roy (1996): Continuum Percolation (Cambridge University Press)

    Google Scholar 

  19. Penrose, M.D. (1991): ‘On a continuum percolation model’, Adv. Appl. Probab. 23, pp. 536–556

    Article  MATH  MathSciNet  Google Scholar 

  20. Swendsen, R.H., J.-S. Wang (1987): ‘Nonuniversal critical dynamics in Monte Carlo simulations’, Phys. Rev. Lett. 58, pp. 86–88

    Article  ADS  Google Scholar 

  21. Thönnes, E. (1999): ‘Perfect simulation of some point processes for the impatient user’, Adv. Appl. Probab. 31, pp. 69–87

    Article  MATH  Google Scholar 

  22. Widom, B., J.S. Rowlinson (1970): ‘New model for the study of liquid-vapor phase transition’, J. Chem. Phys. 52, pp. 1670–1684

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Georgii, HO. (2000). Phase Transition and Percolation in Gibbsian Particle Models. In: Mecke, K.R., Stoyan, D. (eds) Statistical Physics and Spatial Statistics. Lecture Notes in Physics, vol 554. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45043-2_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-45043-2_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67750-5

  • Online ISBN: 978-3-540-45043-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics