Abstract
We consider a geometric percolation process partially motivated by recent work of Hejda and Kala. Specifically, we start with an initial set \(X \subseteq {\mathbb {Z}}^2\), and then iteratively check whether there exists a triangle \(T \subseteq {\mathbb {R}}^2\) with its vertices in \({\mathbb {Z}}^2\) such that T contains exactly four points of \({\mathbb {Z}}^2\) and exactly three points of X. In this case, we add the missing lattice point of T to X, and we repeat until no such triangle exists. We study the limit sets S, the sets stable under this process, including determining their possible densities and some of their structure.
Similar content being viewed by others
References
Aizenman, M., Lebowitz, J.: Metastability effects in bootstrap percolation. J. Phys. A: Math. Gen. 21(19), 3801 (1988). https://doi.org/10.1088/0305-4470/21/19/017
Balister, P., Bollobás, B., Lee, J., Narayanan, B.: Line percolation. Random Struct. Algorithms 52(4), 597–616 (2018). https://doi.org/10.1002/rsa.20755
Balister, P., Bollobás, B., Morris, R., Smith, P.: The critical length for growing a droplet. arXiV Preprint (2023). arXiv:2203.13808. https://doi.org/10.1090/S0002-9947-2011-05552-2
Balister, P., Bollobás, B., Morris, R., Smith, P.: Subcritical monotone cellular automata. Random Struct. Algorithms (2023). https://doi.org/10.1002/rsa.21174
Balister, P., Bollobás, B., Przykucki, M.L., Smith, P.: Subcritical \({\cal{U} }\)-bootstrap percolation models have non-trivial phase transitions. Trans. Am. Math. Soc. 368(10), 7385–7411 (2016). https://doi.org/10.1090/tran/6586
Balogh, J., Bollobás, B.: Sharp thresholds in bootstrap percolation. Physica A 326(3), 305–312 (2003). https://doi.org/10.1016/S0378-4371(03)00364-9
Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Trans. Am. Math. Soc. 364(5), 2667–2701 (2012)
Balogh, J., Bollobás, B., Morris, R., Riordan, O.: Linear algebra and bootstrap percolation. J. Combin. Theory Ser. A 119(6), 1328–1335 (2012). https://doi.org/10.1016/j.jcta.2012.03.005
Balogh, J., Peres, Y., Pete, G.: Bootstrap percolation on infinite trees and non-amenable groups. Combin. Probab. Comput. 15(5), 715–730 (2006). https://doi.org/10.1017/S0963548306007619
Blanco, M., Santos, F.: Lattice \(3\)-polytopes with few lattice points. SIAM J. Discret. Math. 30(2), 669–686 (2016). https://doi.org/10.1137/15M1014450
Blomer, V., Kala, V.: Number fields without \(n\)-ary universal quadratic forms. Math. Proc. Camb. Philos. Soc. 159(2), 239–252 (2015). https://doi.org/10.1017/S030500411500033X
Bollobás, B., Duminil-Copin, H., Morris, R., Smith, P.: Universality for two-dimensional critical cellular automata. Proc. Lond. Math. Soc. 126(2), 620–703 (2023). https://doi.org/10.1112/plms.12497
Bollobás, B., Smith, P., Uzzell, A.: Monotone cellular automata in a random environment. Combin. Probab. Comput. 24(4), 687–722 (2015). https://doi.org/10.1017/S0963548315000012
Brunotte, H.: Zur Zerlegung totalpositiver Zahlen in Ordnungen totalreeller algebraischer Zahlkörper. Arch. Math. (Basel) 41(6), 502–503 (1983). https://doi.org/10.1007/BF01198578
Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J. Phys. C Solid State Phys. 12(1), L31–L35 (1979). https://doi.org/10.1088/0022-3719/12/1/008
Gerbner, D., Keszegh, B., Mészáros, G., Patkós, B., Vizer, M.: Line percolation in finite projective planes. SIAM J. Discret. Math. 32(2), 864–881 (2018). https://doi.org/10.1137/16M1087709
Gravner, J., Griffeath, D.: Scaling laws for a class of critical cellular automaton growth rules. In: Proceedings of the Erdős Center Workshop on Random Walks, pp. 167–188 (1999)
Hartarsky, I.: \({\cal{U} }\)-bootstrap percolation: critical probability, exponential decay and applications. Ann. Inst. Henri Poincaré Probab. Stat. 57(3), 1255–1280 (2021). https://doi.org/10.1214/20-AIHP1112
Hartarsky, I., Szabó, R.: Subcritical bootstrap percolation via Toom contours. Electron. Commun. Probab. (2023). https://doi.org/10.1214/22-ecp496
Hejda, T., Kala, V.: Additive structure of totally positive quadratic integers. Manuscr. Math. 163(1–2), 263–278 (2020). https://doi.org/10.1007/s00229-019-01143-8
Kala, V., Tinková, M.: Universal quadratic forms, small norms, and traces in families of number fields. Int. Math. Res. Not. (2022). https://doi.org/10.1093/imrn/rnac073
Krásenský, J., Tinková, M., Zemková, K.: There are no universal ternary quadratic forms over biquadratic fields. Proc. Edinb. Math. Soc. (2) 63(3), 861–912 (2020). https://doi.org/10.1017/s001309152000022x
Acknowledgements
This work was started at the 2022 Graduate Research Workshop in Combinatorics, which was supported in part by NSF grant 1953985 and a generous award from the Combinatorics Foundation. We thank the referees for their careful reading and useful comments that improved the presentation of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: János Pach
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Igor Araujo research partially supported by UIUC Campus Research Board RB 22000. Robert A. Krueger research supported the NSF Graduate Research Fellowship Program Grant No. DGE 21-4675. Bernard Lidický research of this author is supported in part by NSF Grant DMS-2152490 and Scott Hanna fellowship. Florian Pfender research is partially supported by NSF grant DMS-2152498. Sam Spiro research supported by the NSF Mathematical Sciences Postdoctoral research Fellowships Program under Grant DMS-2202730. Eric Nathan Stucky research partially supported by Czech Science Foundation Grant 21-00420M.
Appendix: Computer-Assisted Proofs
Appendix: Computer-Assisted Proofs
In this appendix, we discuss the Python code for a program that proves Lemmas 3.4 and 3.8, and classifies the sets considered in Remark 3.9 (Fig. 13). This code can be found in the supplementary files.
The code enumerates all B-stable subsets of a given set of points using a depth-first search. First we set up some helpful functions, including the main recursive step. Then we give the three applications. Lemma 3.4 states every B-stable set \(S \subsetneq {\mathbb {Z}}^2\) has \(|S \cap ([6]\times [6])|\le 9\) and Remark 3.9 describes all B-stable sets \(S \subseteq [6]^2\) with \(\Gamma (S) \ne \emptyset \) and \(|S|=9\) up to rotation and reflection; the code completes this calculation in only a few seconds on a personal computer. Lemma 3.8 states that every B-stable set \(S \subsetneq {\mathbb {Z}}^2\) with \(\Gamma (S) \cap ([6]\times [12]) \ne \emptyset \) has \(|S \cap ([6]\times [12])|\le 16\); this takes longer to calculate, about 6 min on the same hardware.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Araujo, I., Frederickson, B., Krueger, R.A. et al. Triangle Percolation on the Grid. Discrete Comput Geom (2024). https://doi.org/10.1007/s00454-024-00645-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00454-024-00645-x