Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Abstract

We consider a geometric percolation process partially motivated by recent work of Hejda and Kala. Specifically, we start with an initial set \(X \subseteq {\mathbb {Z}}^2\), and then iteratively check whether there exists a triangle \(T \subseteq {\mathbb {R}}^2\) with its vertices in \({\mathbb {Z}}^2\) such that T contains exactly four points of \({\mathbb {Z}}^2\) and exactly three points of X. In this case, we add the missing lattice point of T to X, and we repeat until no such triangle exists. We study the limit sets S, the sets stable under this process, including determining their possible densities and some of their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aizenman, M., Lebowitz, J.: Metastability effects in bootstrap percolation. J. Phys. A: Math. Gen. 21(19), 3801 (1988). https://doi.org/10.1088/0305-4470/21/19/017

    Article  MathSciNet  Google Scholar 

  2. Balister, P., Bollobás, B., Lee, J., Narayanan, B.: Line percolation. Random Struct. Algorithms 52(4), 597–616 (2018). https://doi.org/10.1002/rsa.20755

    Article  MathSciNet  Google Scholar 

  3. Balister, P., Bollobás, B., Morris, R., Smith, P.: The critical length for growing a droplet. arXiV Preprint (2023). arXiv:2203.13808. https://doi.org/10.1090/S0002-9947-2011-05552-2

  4. Balister, P., Bollobás, B., Morris, R., Smith, P.: Subcritical monotone cellular automata. Random Struct. Algorithms (2023). https://doi.org/10.1002/rsa.21174

    Article  Google Scholar 

  5. Balister, P., Bollobás, B., Przykucki, M.L., Smith, P.: Subcritical \({\cal{U} }\)-bootstrap percolation models have non-trivial phase transitions. Trans. Am. Math. Soc. 368(10), 7385–7411 (2016). https://doi.org/10.1090/tran/6586

    Article  MathSciNet  Google Scholar 

  6. Balogh, J., Bollobás, B.: Sharp thresholds in bootstrap percolation. Physica A 326(3), 305–312 (2003). https://doi.org/10.1016/S0378-4371(03)00364-9

    Article  Google Scholar 

  7. Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Trans. Am. Math. Soc. 364(5), 2667–2701 (2012)

    Article  MathSciNet  Google Scholar 

  8. Balogh, J., Bollobás, B., Morris, R., Riordan, O.: Linear algebra and bootstrap percolation. J. Combin. Theory Ser. A 119(6), 1328–1335 (2012). https://doi.org/10.1016/j.jcta.2012.03.005

    Article  MathSciNet  Google Scholar 

  9. Balogh, J., Peres, Y., Pete, G.: Bootstrap percolation on infinite trees and non-amenable groups. Combin. Probab. Comput. 15(5), 715–730 (2006). https://doi.org/10.1017/S0963548306007619

    Article  MathSciNet  Google Scholar 

  10. Blanco, M., Santos, F.: Lattice \(3\)-polytopes with few lattice points. SIAM J. Discret. Math. 30(2), 669–686 (2016). https://doi.org/10.1137/15M1014450

    Article  MathSciNet  Google Scholar 

  11. Blomer, V., Kala, V.: Number fields without \(n\)-ary universal quadratic forms. Math. Proc. Camb. Philos. Soc. 159(2), 239–252 (2015). https://doi.org/10.1017/S030500411500033X

    Article  MathSciNet  Google Scholar 

  12. Bollobás, B., Duminil-Copin, H., Morris, R., Smith, P.: Universality for two-dimensional critical cellular automata. Proc. Lond. Math. Soc. 126(2), 620–703 (2023). https://doi.org/10.1112/plms.12497

    Article  MathSciNet  Google Scholar 

  13. Bollobás, B., Smith, P., Uzzell, A.: Monotone cellular automata in a random environment. Combin. Probab. Comput. 24(4), 687–722 (2015). https://doi.org/10.1017/S0963548315000012

    Article  MathSciNet  Google Scholar 

  14. Brunotte, H.: Zur Zerlegung totalpositiver Zahlen in Ordnungen totalreeller algebraischer Zahlkörper. Arch. Math. (Basel) 41(6), 502–503 (1983). https://doi.org/10.1007/BF01198578

    Article  MathSciNet  Google Scholar 

  15. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J. Phys. C Solid State Phys. 12(1), L31–L35 (1979). https://doi.org/10.1088/0022-3719/12/1/008

    Article  Google Scholar 

  16. Gerbner, D., Keszegh, B., Mészáros, G., Patkós, B., Vizer, M.: Line percolation in finite projective planes. SIAM J. Discret. Math. 32(2), 864–881 (2018). https://doi.org/10.1137/16M1087709

    Article  MathSciNet  Google Scholar 

  17. Gravner, J., Griffeath, D.: Scaling laws for a class of critical cellular automaton growth rules. In: Proceedings of the Erdős Center Workshop on Random Walks, pp. 167–188 (1999)

  18. Hartarsky, I.: \({\cal{U} }\)-bootstrap percolation: critical probability, exponential decay and applications. Ann. Inst. Henri Poincaré Probab. Stat. 57(3), 1255–1280 (2021). https://doi.org/10.1214/20-AIHP1112

    Article  MathSciNet  Google Scholar 

  19. Hartarsky, I., Szabó, R.: Subcritical bootstrap percolation via Toom contours. Electron. Commun. Probab. (2023). https://doi.org/10.1214/22-ecp496

    Article  Google Scholar 

  20. Hejda, T., Kala, V.: Additive structure of totally positive quadratic integers. Manuscr. Math. 163(1–2), 263–278 (2020). https://doi.org/10.1007/s00229-019-01143-8

    Article  MathSciNet  Google Scholar 

  21. Kala, V., Tinková, M.: Universal quadratic forms, small norms, and traces in families of number fields. Int. Math. Res. Not. (2022). https://doi.org/10.1093/imrn/rnac073

    Article  Google Scholar 

  22. Krásenský, J., Tinková, M., Zemková, K.: There are no universal ternary quadratic forms over biquadratic fields. Proc. Edinb. Math. Soc. (2) 63(3), 861–912 (2020). https://doi.org/10.1017/s001309152000022x

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was started at the 2022 Graduate Research Workshop in Combinatorics, which was supported in part by NSF grant 1953985 and a generous award from the Combinatorics Foundation. We thank the referees for their careful reading and useful comments that improved the presentation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Araujo.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Igor Araujo research partially supported by UIUC Campus Research Board RB 22000. Robert A. Krueger research supported the NSF Graduate Research Fellowship Program Grant No. DGE 21-4675. Bernard Lidický research of this author is supported in part by NSF Grant DMS-2152490 and Scott Hanna fellowship. Florian Pfender research is partially supported by NSF grant DMS-2152498. Sam Spiro research supported by the NSF Mathematical Sciences Postdoctoral research Fellowships Program under Grant DMS-2202730. Eric Nathan Stucky research partially supported by Czech Science Foundation Grant 21-00420M.

Appendix: Computer-Assisted Proofs

Appendix: Computer-Assisted Proofs

In this appendix, we discuss the Python code for a program that proves Lemmas 3.4 and 3.8, and classifies the sets considered in Remark 3.9 (Fig. 13). This code can be found in the supplementary files.

The code enumerates all B-stable subsets of a given set of points using a depth-first search. First we set up some helpful functions, including the main recursive step. Then we give the three applications. Lemma 3.4 states every B-stable set \(S \subsetneq {\mathbb {Z}}^2\) has \(|S \cap ([6]\times [6])|\le 9\) and Remark 3.9 describes all B-stable sets \(S \subseteq [6]^2\) with \(\Gamma (S) \ne \emptyset \) and \(|S|=9\) up to rotation and reflection; the code completes this calculation in only a few seconds on a personal computer. Lemma 3.8 states that every B-stable set \(S \subsetneq {\mathbb {Z}}^2\) with \(\Gamma (S) \cap ([6]\times [12]) \ne \emptyset \) has \(|S \cap ([6]\times [12])|\le 16\); this takes longer to calculate, about 6 min on the same hardware.

Fig. 13
figure 13

All B-stable sets \(S \subseteq [6]^2\) with \(\Gamma (S) \ne \emptyset \) and \(|S|=9\), up to reflection and rotation

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, I., Frederickson, B., Krueger, R.A. et al. Triangle Percolation on the Grid. Discrete Comput Geom (2024). https://doi.org/10.1007/s00454-024-00645-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00454-024-00645-x

Keywords

Mathematics Subject Classification

Navigation