Abstract
Non-overlapping axis-aligned rectangles in the plane define visibility graphs in which vertices are associated with rectangles and edges with visibility in either the horizontal or vertical direction. The recognition problem for such graphs is known to be NP-complete. This paper introduces the topological rectangle visibility graph.We give a polynomial time algorithm for recognizing such a graph and for constructing, when possible, a realizing set of rectangles on the unit grid. The bounding box of these rectangles has optimum length in each dimension. The algorithm provides a compaction tool: given a set of rectangles, one computes its associated graph, and runs the algorithm to get a compact set of rectangles with the same visibility properties.
Partially supported by NSF RUI grant CCR-0105507.
Partially supported by NSERC and FCAR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. Alt, M. Godau, and S. Whitesides. Universal 3-dimensional visibility representations for graphs. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), vol. 1027 of Lecture Notes Comput. Sci., pp. 8–19. Springer-Verlag, 1996.
G. Brightwell and P. Winkler. Counting linear extensions is #P-complete. Proc. STOC 23, pp. 175–181, 1991.
K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput.System Sci. 13, pp. 335–379, 1976.
P. Bose, A. Dean, J. Hutchinson, and T. Shermer. On rectangle visibility graphs I: k-trees and caterpillar forests. Tech. report, DIMACS and Simon Fraser U., May 1996.
P. Bose, H. Everett, S. P. Fekete, A. Lubiw, H. Meijer, K. Romanik, T. Shermer, and S. Whitesides. On a visibility representation for graphs in three dimensions. In D. Avis and P. Bose, eds., Snapshots in Computational and Discrete Geometry, Vol. III, pp. 2–25. McGill U., July 1994. McGill tech. report SOCS-94.50.
P. Bose, H. Everett, Michael E. Houle, S. Fekete, A. Lubiw, H. Meijer, K. Romanik, G. Rote, T. Shermer, S. Whitesides, and Christian Zelle. A visibility representation for graphs in three dimensions. J. Graph Algorithms and Applications, vol. 2, no. 3, pp. 1–16, 1998.
P. Bose, A. Josefczyk, J. Miller, and J. O’Rourke. K 42 is a box visibility graph. In Snapshots of Computational and Discrete Geometry, vol. 3, pp. 88–91. School Comput. Sci., McGill U., Montreal, July 1994. Tech. report SOCS-94.50.
A. M. Dean and J. P. Hutchinson. Rectangle-visibility representations of bipartite graphs. In R. Tamassia and I. G. Tollis, eds., Graph Drawing (Proc. GD’ 94), vol. 894 of Lecture Notes Comput. Sci., pp. 159–166. Springer-Verlag, 1995.
G. Di Battista, P. Eades, R. Tamassia, and I. Tollis. Graph Drawing: Algorithms for the visualization of graphs. Prentice Hall, Upper Saddle River NJ, 1999.
Jeong-In Doh and Kyung-Yong Chwa. Visibility problems for orthogonal objects in two or three dimensions. Visual Comput., vol. 4, no. 2, pp. 84–97, July 1988.
S. P. Fekete, M. E. Houle, and S. Whitesides. New results on a visibility representation of graphs in 3-d. In F. Brandenburg, ed., Graph Drawing’ 95, vol. 1027 of Lecture Notes Comput. Sci., pp. 234–241. Springer-Verlag, 1996.
H. de Fraysseix and P. Rosenstiehl. L’algorithme gauche-droite pour le plongement des graphes dans le plan.
Xin He and Ming-Yang Kao. Regular edge labelings and drawings of planar graphs. In Proc. Graph Drawing conf., pp. 96–103, 1994.
J. Hopcroft and R. Tarjan. Efficient planarity testing. J. Assoc. Comput. Machin. 21, pp. 549–568, 1974.
J. P. Hutchinson, T. Shermer, and A. Vince. On representations of some thicknesstwo graphs. In F. Brandenburg, ed., Graph Drawing’ 95, vol. 1027 of Lecture Notes Comput. Sci., pp. 324–332. Springer-Verlag, 1995.
A. Josefczyk, J. Miller, and J. O’Rourke. Arkin’s conjecture for rectangle and box visibility graphs. Tech. Report 036, Dept. Comput. Sci., Smith College, July 1994.
D. G. Kirkpatrick and S. K. Wismath. Weighted visibility graphs of bars and related flow problems. In Proc. 1st Workshop Algorithms Data Struct., vol. 382 of Lecture Notes Comput. Sci., pp. 325–334. Springer-Verlag, 1989.
A. Lempel, S. Even and I. Cederbaum. An algorithm for planarity testing of graphs. In (P. Rosenstiehl, ed., Theory of Graphs (Int. Symposium, Rome, 1966), pp. 215–232, Gordon and Breach, New York, 1967.
E. Lodi and L. Pagli. A VLSI solution to the vertical segment visibility problem. IEEE Trans. Comput., vol. C-35, no. 10, pp. 923–928, 1986.
F. Luccio, S. Mazzone, and C. Wong. A note on visibility graphs. Discrete Math., vol. 64, pp. 209–219, 1987.
M. H. Overmars and D. Wood. On rectangular visibility. J. Algorithms, vol. 9, pp. 372–390, 1988.
K. Romanik. Directed rectangle-visibility graphs have unbounded dimension. In Proc. 7th Canad. Conf. Comput. Geom., pp. 163–167, 1995.
Pierre Rosenstiehl and Robert Tarjan. Rectiliniar planar layouts and bipolar orientations of planar graphs. Discrete Comput Geom., vol. 1, pp. 343–353, 1986.
T. Shermer. On rectangle visibility graphs III: External visibility and complexity. Tech. report, DIMACS and Simon Fraser U., April 1996.
T. C. Shermer. On rectangle visibility graphs, III: External visibility and complexity. In Proc. 8th Canad. Conf. Comput. Geom., pp. 234–239, 1996.
R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar graphs. Discrete Comput. Geom., vol. 1, no. 4, pp. 321–341, 1986.
S. K. Wismath. Characterizing bar line-of-sight graphs. In Proc. 1st Annu. ACM Sympos. Comput. Geom., pp. 147–152, 1985.
S. K. Wismath. Bar-Representable Visibility Graphs and Related Flow Problems. Ph.D. thesis, Dept. Comput. Sci., U. British Columbia, 1989.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Streinu, I., Whitesides, S. (2003). Rectangle Visibility Graphs: Characterization, Construction, and Compaction. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_4
Download citation
DOI: https://doi.org/10.1007/3-540-36494-3_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00623-7
Online ISBN: 978-3-540-36494-8
eBook Packages: Springer Book Archive