Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rectangle Visibility Graphs: Characterization, Construction, and Compaction

  • Conference paper
  • First Online:
STACS 2003 (STACS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2607))

Included in the following conference series:

  • 962 Accesses

Abstract

Non-overlapping axis-aligned rectangles in the plane define visibility graphs in which vertices are associated with rectangles and edges with visibility in either the horizontal or vertical direction. The recognition problem for such graphs is known to be NP-complete. This paper introduces the topological rectangle visibility graph.We give a polynomial time algorithm for recognizing such a graph and for constructing, when possible, a realizing set of rectangles on the unit grid. The bounding box of these rectangles has optimum length in each dimension. The algorithm provides a compaction tool: given a set of rectangles, one computes its associated graph, and runs the algorithm to get a compact set of rectangles with the same visibility properties.

Partially supported by NSF RUI grant CCR-0105507.

Partially supported by NSERC and FCAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Alt, M. Godau, and S. Whitesides. Universal 3-dimensional visibility representations for graphs. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), vol. 1027 of Lecture Notes Comput. Sci., pp. 8–19. Springer-Verlag, 1996.

    Google Scholar 

  2. G. Brightwell and P. Winkler. Counting linear extensions is #P-complete. Proc. STOC 23, pp. 175–181, 1991.

    Google Scholar 

  3. K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput.System Sci. 13, pp. 335–379, 1976.

    MATH  MathSciNet  Google Scholar 

  4. P. Bose, A. Dean, J. Hutchinson, and T. Shermer. On rectangle visibility graphs I: k-trees and caterpillar forests. Tech. report, DIMACS and Simon Fraser U., May 1996.

    Google Scholar 

  5. P. Bose, H. Everett, S. P. Fekete, A. Lubiw, H. Meijer, K. Romanik, T. Shermer, and S. Whitesides. On a visibility representation for graphs in three dimensions. In D. Avis and P. Bose, eds., Snapshots in Computational and Discrete Geometry, Vol. III, pp. 2–25. McGill U., July 1994. McGill tech. report SOCS-94.50.

    Google Scholar 

  6. P. Bose, H. Everett, Michael E. Houle, S. Fekete, A. Lubiw, H. Meijer, K. Romanik, G. Rote, T. Shermer, S. Whitesides, and Christian Zelle. A visibility representation for graphs in three dimensions. J. Graph Algorithms and Applications, vol. 2, no. 3, pp. 1–16, 1998.

    MathSciNet  Google Scholar 

  7. P. Bose, A. Josefczyk, J. Miller, and J. O’Rourke. K 42 is a box visibility graph. In Snapshots of Computational and Discrete Geometry, vol. 3, pp. 88–91. School Comput. Sci., McGill U., Montreal, July 1994. Tech. report SOCS-94.50.

    Google Scholar 

  8. A. M. Dean and J. P. Hutchinson. Rectangle-visibility representations of bipartite graphs. In R. Tamassia and I. G. Tollis, eds., Graph Drawing (Proc. GD’ 94), vol. 894 of Lecture Notes Comput. Sci., pp. 159–166. Springer-Verlag, 1995.

    Google Scholar 

  9. G. Di Battista, P. Eades, R. Tamassia, and I. Tollis. Graph Drawing: Algorithms for the visualization of graphs. Prentice Hall, Upper Saddle River NJ, 1999.

    Google Scholar 

  10. Jeong-In Doh and Kyung-Yong Chwa. Visibility problems for orthogonal objects in two or three dimensions. Visual Comput., vol. 4, no. 2, pp. 84–97, July 1988.

    Article  Google Scholar 

  11. S. P. Fekete, M. E. Houle, and S. Whitesides. New results on a visibility representation of graphs in 3-d. In F. Brandenburg, ed., Graph Drawing’ 95, vol. 1027 of Lecture Notes Comput. Sci., pp. 234–241. Springer-Verlag, 1996.

    Google Scholar 

  12. H. de Fraysseix and P. Rosenstiehl. L’algorithme gauche-droite pour le plongement des graphes dans le plan.

    Google Scholar 

  13. Xin He and Ming-Yang Kao. Regular edge labelings and drawings of planar graphs. In Proc. Graph Drawing conf., pp. 96–103, 1994.

    Google Scholar 

  14. J. Hopcroft and R. Tarjan. Efficient planarity testing. J. Assoc. Comput. Machin. 21, pp. 549–568, 1974.

    MATH  MathSciNet  Google Scholar 

  15. J. P. Hutchinson, T. Shermer, and A. Vince. On representations of some thicknesstwo graphs. In F. Brandenburg, ed., Graph Drawing’ 95, vol. 1027 of Lecture Notes Comput. Sci., pp. 324–332. Springer-Verlag, 1995.

    Google Scholar 

  16. A. Josefczyk, J. Miller, and J. O’Rourke. Arkin’s conjecture for rectangle and box visibility graphs. Tech. Report 036, Dept. Comput. Sci., Smith College, July 1994.

    Google Scholar 

  17. D. G. Kirkpatrick and S. K. Wismath. Weighted visibility graphs of bars and related flow problems. In Proc. 1st Workshop Algorithms Data Struct., vol. 382 of Lecture Notes Comput. Sci., pp. 325–334. Springer-Verlag, 1989.

    Google Scholar 

  18. A. Lempel, S. Even and I. Cederbaum. An algorithm for planarity testing of graphs. In (P. Rosenstiehl, ed., Theory of Graphs (Int. Symposium, Rome, 1966), pp. 215–232, Gordon and Breach, New York, 1967.

    Google Scholar 

  19. E. Lodi and L. Pagli. A VLSI solution to the vertical segment visibility problem. IEEE Trans. Comput., vol. C-35, no. 10, pp. 923–928, 1986.

    Article  Google Scholar 

  20. F. Luccio, S. Mazzone, and C. Wong. A note on visibility graphs. Discrete Math., vol. 64, pp. 209–219, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. H. Overmars and D. Wood. On rectangular visibility. J. Algorithms, vol. 9, pp. 372–390, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  22. K. Romanik. Directed rectangle-visibility graphs have unbounded dimension. In Proc. 7th Canad. Conf. Comput. Geom., pp. 163–167, 1995.

    Google Scholar 

  23. Pierre Rosenstiehl and Robert Tarjan. Rectiliniar planar layouts and bipolar orientations of planar graphs. Discrete Comput Geom., vol. 1, pp. 343–353, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Shermer. On rectangle visibility graphs III: External visibility and complexity. Tech. report, DIMACS and Simon Fraser U., April 1996.

    Google Scholar 

  25. T. C. Shermer. On rectangle visibility graphs, III: External visibility and complexity. In Proc. 8th Canad. Conf. Comput. Geom., pp. 234–239, 1996.

    Google Scholar 

  26. R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar graphs. Discrete Comput. Geom., vol. 1, no. 4, pp. 321–341, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  27. S. K. Wismath. Characterizing bar line-of-sight graphs. In Proc. 1st Annu. ACM Sympos. Comput. Geom., pp. 147–152, 1985.

    Google Scholar 

  28. S. K. Wismath. Bar-Representable Visibility Graphs and Related Flow Problems. Ph.D. thesis, Dept. Comput. Sci., U. British Columbia, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Streinu, I., Whitesides, S. (2003). Rectangle Visibility Graphs: Characterization, Construction, and Compaction. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-36494-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00623-7

  • Online ISBN: 978-3-540-36494-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics